DIGITAL INDICATING CONTROLLERS ACD-13A, ACR-13A

INSTRUCTION MANUAL

Shirko

Preface

Thank you for the purchase of our Digital indicating controller ACD-13A or ACR-13A. This manual contains instructions for the mounting, functions, operations and notes when operating the ACD-13A or ACR-13A. To prevent accidents arising from the misuse of this controller, please ensure the operator receives this manual.

Notes

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- Specifications of the instrument and the contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed through a control panel. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos Co., Ltd. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.

SAFETY PRECAUTIONS (Be sure to read these precautions before using our products.)

The safety precautions are classified into categories: "Warning" and "Caution".
Depending on the circumstances, procedures indicated by $₫$ Caution may cause serious results, so be sure to follow the directions for usage.

Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

4 Warning

- To prevent an electric shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electric shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other qualified service personnel.

\triangle Safety Precautions

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for industrial machinery, machine tools and measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices, such as protective equipment used for excessive rises in temperature, must be installed, as malfunction of this product could result in serious damage to the system, or injury to personnel. Also proper periodic maintenance is required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Caution with respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

1. Installation precautions

Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1):
Overvoltage category II, Pollution degree 2
Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to $50{ }^{\circ} \mathrm{C}\left(32\right.$ to $122{ }^{\circ} \mathrm{F}$) that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85% RH
- No large capacity electromagnetic switches or cables through which large current is flowing.
- No water, oil or chemicals or where the vapors of these substances can come into direct contact with the unit
- Take note that the ambient temperature of this unit - not the ambient temperature of the control panel - must not exceed $50{ }^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$ if mounted through the face of a control panel. Otherwise the life of electronic components (especially electrolytic capacitors) may be shortened.
Note: Avoid setting this instrument directly on or near flammable material even though the case of this instrument is made of flame-resistant resin.

2. Wiring precautions

Caution

- Do not leave wire remnants in the instrument, as they could cause a fire and/or malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the instrument.
- The terminal block of this instrument is designed to be wired from the left side. The lead wire must be inserted from the left side of the terminal, and fastened with the terminal screw.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw or case may be damaged.
- This instrument does not have a built-in power switch, circuit breaker or fuse.

Be sure to install a built-in power switch, circuit breaker or fuse near the controller.
(Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)

- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use a thermocouple and compensating lead wire according to the sensor input specifications of this controller.
- Use the 3-wire RTD according to the sensor input specifications of this controller.
- For voltage input, (+) side input terminal number differs depending on its range as follows.
(+) side input terminal number of 0-5 V DC, 1-5 V DC, 0-10 V DC: 16
$(+)$ side input terminal number of $0-10 \mathrm{mV}$ DC, $-10-10 \mathrm{mV}$ DC, $0-50 \mathrm{mV}$ DC, $0-100 \mathrm{mV}$ DC, 0-1 V DC: 18
- When using a relay contact output type, externally use a relay according to the capacity of the load to protect the built-in relay contact.
- When wiring, keep input wires (thermocouple, RTD, etc.) away from AC sources or load wires.

3．Operation and maintenance precautions Caution

－It is recommended that AT（auto－tuning）be performed during the trial run．
－Do not touch live terminals．This may cause electric shock or problems in operation．
－Turn the power supply to the instrument OFF when retightening the terminal and cleaning．
Working on or touching the terminal with the power switched ON may result in severe injury or death due to electric shock．
－Use a soft，dry cloth when cleaning the instrument．
（Alcohol based substances may tarnish or deface the unit．）
－As the display section is vulnerable，do not strike or scratch it with a hard object or press hard on them．

Abbreviations used in this manual

Symbol	Term
PV	Process variable
SV	Desired value
MV	Output manipulated variable
DV	Deviation
AT	Auto－tuning
CT	Current transformer（for Heater burnout alarm option）

Characters used in this manual：

Indication	－	－	＇	こ	Ξ	4	Ξ	E	7	$日$	9	I－	F－
Number，${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	－1	0	1	2	3	4	5	6	7	8	9	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Indication	F	口	－	－	E	F	－	i－1	；	－	\cdots	1	\cdots
Alphabet	A	B	C	D	E	F	G	H	1	J	K	L	M
Indication	的	\square	F	㫛	伿	4	＇－	！	！＇	imi	\because	\exists	$\bar{\square}$
Alphabet	N	0	P	Q	R	S	T	U	V	W	X	Y	Z

-.- CONTENTS ---

1. Model
1.1 Model 7
1.2 How to read the model label 8
2. Name and functions 9
3. Mounting to the control panel
3.1 External dimensions (Scale: mm) 12
3.2 Panel cutout (Scale: mm) 13
3.3 CT external dimensions (Scale: mm) 13
3.4 Mounting and removal to/from the control panel 14
4. Wiring
4.1 Terminal arrangement 15
4.2 Lead wire solderless terminal 16
4.3 Wiring example 17
5. Outline of key operation and setting groups 19
6. Operation flowchart 20
6.1 Simplified setting (SV, Event and PID setting mode: Effective for Fixed value control)- 20
6.2 Group selection (for Fixed value control) 21
6.3 Group selection (for Program control) 24
7. Setup 25
7.1 Turn the power supply to the unit ON. 27
7.2 Basic operation of settings 27
7.3 Engineering group
7.3.1 Input group 28
7.3.2 Output group 31
7.3.3 Event input group 33
7.3.4 Event output group 35
7.3.5 Program group 43
7.3.6 Communication group 44
7.3.7 External setting group 45
7.3.8 Transmission output group 46
7.3.9 Other function group 47
8. Settings
8.1 Simplified setting method 52
8.1.1 SV setting mode 52
8.1.2 Event setting mode 52
8.1.3 PID setting mode 56
8.2 Group selection 58
8.2.1 SV, Event group (for Fixed value control) 58
8.2.2 Program pattern group (for Program control) 61
8.2.3 PID group 65
8.2.4 AT group 67
9. Operation
9.1 Starting operation 68
9.2 Control output OFF function 71
9.3 Switching Auto/Manual control 72
9.4 Indicating MV and remaining step time (Program control) 72
9.5 AT/Auto-reset Perform, AT Cancel 72
9.6 Using Event output as a High/Low limits independent alarm 74
9.7 Set value memory function 76
10. Auto-reset 77
11. AT (Auto-tuning) 77
12. Action explanation
12.1 OUT1 action 79
12.2 OUT1 ON/OFF control action 80
12.3 Alarm action 81
12.4 Heater burnout alarm action 83
12.5 OUT2(Heating/Cooling control) action 84
12.6 OUT2 (Heating/Cooling control) action (when setting dead band) 85
12.7 OUT2 (Heating/Cooling control) action (when setting overlap band) 86
13. Specifications
13.1 Standard specifications 87
13.2 Optional specifications 93
14. Troubleshooting
14.1 Indication 97
14.2 Key operation 98
14.3 Control 99
15 Character tables 100

1. Model

1.1 Model

(*1) 13 types of alarm action (including No event) and Energized/De-energized, Timer output, Heater burnout alarm output option, Loop break alarm output, Time signal output, Output during AT or Pattern end output can be selected by front keypad.
(*2) An input type can be selected by front keypad from; Thermocouple, RTD, Current and Voltage.
(*3) Supply voltage 100 to 240 V AC is standard. When ordering 24 V AC/DC, enter " 1 " after the input code.
(*4) The rated current 20 A and 100 A for single-phase and 3-phase can be selected by front keypad.

1.2 How to read the model label

The model label is attached to the left side of the case.

(Fig. 1.2-1)

2. Name and functions

ACD-13A

(Fig. 2-1) ACD-13A Displays, Keys

ACR-13A

(Fig. 2-2) ACR-13A Displays, Keys

(Fig. 2-3) ACD-13A Case

(Fig. 2-4) ACR-13A Case

Displays

(1) PV indicator

Lights when PV is indicated in PV/SV display mode.
(2) PV display

Indicates the PV or setting characters in setting mode.
(3) SV/MV/TIME indicator

SV: Lights when SV is indicated in PV/SV display mode.
MV: Lights when MV is indicated in PV/SV display mode.
TIME: Lights when remaining step time (program control) is indicated in PV/SV display mode.

(4) SV/MV/TIME display

Indicates the SV, MV, remaining step time (program control) or set values in each setting mode.
(5) MV/DV indicator

MV: Lights when MV is indicated on the bar graph.
DV: Lights when DV (deviation) is indicated on the bar graph.
(6) MV/DV bar graph

MV or DV (deviation) is indicated on a bar graph.
(7) MEMO/STEP indicator

MEMO : Lights when a Set value memory number is indicated.
STEP : Lights when a step number is indicated during program control.
Flashes during Wait.
(8) MEMO/STEP display

Indicates the Set value memory number or step number (program control).
(9) M/S indicator

M: Lights when step time unit "Hour:Minute" is selected in the program control.
S: Lights when step time unit "Minute:Second" is selected in the program control.

(10) Action indicators

OUT1: Lights when control output (OUT1) is ON.
For current output type, flashes corresponding to the MV in 125 ms cycles.
OUT2: Lights when control output OUT2 (D \square option) is ON.
For current output type, flashes corresponding to the MV in 125 ms cycles.
EVT1: Lights when EVT1 (Event 1) output occurs.
EVT2: Lights when EVT2 (Event 2) output occurs.
EVT3: Lights when EVT3 (Event 3) output occurs.
EVT4: Lights when EVT4 (Event 4) output occurs.
EVT5: Lights when EVT5 (Event 5) output occurs.
MAN: Lights during manual control.
T/R: Lights during Serial communication (C, C5 option) [TX (transmitting) output].
AT: Flashes while AT (auto-tuning) or auto-reset is performing.
LOCK: Lights when Set value Lock 1, Lock 2, Lock 3 or Lock 4 is selected.
RUN: Lights while program is running.
HOLD: Flashes while program is on hold (suspended).

Key operations

(11) \triangle Increase key: Increases the numeric value.

If this key is pressed for 1 sec during program operation (RUN), the unit proceeds to the next step. (This is an Advance function.)
(12) ∇ Decrease key: Decreases the numeric value.
(13) SET key

Switches setting groups.
Switches step numbers in the Program group.
Switches Set value memory numbers in the "SV, Event group".
Switches block numbers in the PID group.
(14) MODE key

Selects setting mode, and registers the set value.
To register the set (selected) value, press this key.
(15) RUN/STOP key

For Fixed value control, PV/SV display mode or standby mode can be switched by pressing this key for 1 sec.
In standby mode, pressing this key turns all outputs OFF as when the power supply is turned off.

In program mode, control RUNS/STOPS.
In standby mode, pressing this key RUNS program control.
Program control STOPS by pressing this key for 1 sec during program operation (RUN).

(16) A/M B.MODE key

Switches Auto/Manual control.
If this key is pressed during setting mode, the unit reverts to the previous group or mode.

Case

(17) Console connector

By connecting to the USB communication cable (CMB-001, sold separately), the following operations can be conducted from an external computer using the Console software SWS-AC001M.

- Reading and setting of SV, PID and various set values
- Reading of PV and action status
- Function change

3. Mounting to the control panel

3.1 External dimensions (Scale: mm)

(Fig. 3.1-1)

(Fig. 3.1-2)
3.2 Panel cutout (Scale: mm)

Caution

If lateral close mounting is used for the controller, IP66 specification (Drip-proof/ Dust-proof) may be compromised, and all warranties will be invalidated.

ACD-13A

Lateral close mounting n : Number of units mounted
(Fig. 3.2-1)

ACR-13A

Lateral close mounting n : Number of units mounted
3.3 CT (Current transformer) external dimensions (Scale: mm)

CTL-6S (for 20 A)

CTL-12-S36-10L1U (for 100 A)

(Fig. 3.3-1)

3.4 Mounting and removal to/from the control panel (Common to ACD-13A, ACR-13A)

Caution

As the case is made of resin, do not use excessive force while screwing in the mounting bracket, or the case or mounting brackets could be damaged. The torque should be $0.12 \mathrm{~N} \cdot \mathrm{~m}$.

How to mount the unit

Mount the controller vertically to the flat, rigid panel to ensure it adheres to the Drip-proof/Dust-proof specification (IP66).
Mountable panel thickness: 1 to 8 mm
(1) Insert the controller from the front side of the panel.
(2) Attach the mounting brackets by the holes at the top and bottom of the case, and secure the controller in place with the screws.

How to remove the unit
(1) Turn the power to the unit OFF, and disconnect all wires before removing the unit.
(2) Loosen the screws of the mounting brackets, and remove the mounting brackets.
(3) Pull the unit out from the front of the panel.

(Fig.3.4-1)

4. Wiring

Warning
Turn the power supply to the instrument OFF before wiring or checking. Working on or touching the terminal with the power switched ON may result in severe injury or death due to electric shock.
4.1 Terminal arrangement ACD-13A

ACR-13A

(Fig. 4.1-2)

GND:
 Ground

POWER SUPPLY: Supply voltage 100-240 V AC or 24 V AC/DC
For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
OUT1: Control output 1
EVT2/OUT2: EVT2 output or Control output 2 (D \square option)
P24: $\quad 24 \mathrm{~V}$ DC insulated power output (P option)
EVT1: EVT1 output
EVT3: EVT3 output (A3 option)
EVENT INPUT: Event input (El option)
RS-485/RS-232C: Serial communication RS-485(C5 option) or RS-232C(C option)
TC:
RTD: RTD input
DC: DC voltage, current input
(+) side input terminal number of 0-5 V DC, 1-5 V DC, 0-10 V DC: 16
(+) side input terminal number of 0-10 mV DC, -10-10 mV DC,
0-50 mV DC, 0-100 mV DC, 0-1 V DC: 18
TRANSMIT OUTPUT: Transmission output (T $\square \square$ option)
EXT CONT: External setting input (E $\square \square$ option)
CT1: Current transformer input 1 (W, W3 option)
CT2: \quad Current transformer input 2 (W3 option)
EVT4: EVT4 output (A5 option)
EVT5: EVT5 output (A5 option)

4.2 Lead wire solderless terminal

Use a solderless terminal with an insulation sleeve in which an M3 screw fits as shown below.
The torque should be $0.63 \mathrm{~N} \cdot \mathrm{~m}$.

Solderless terminal	Manufacturer	Model	Tightening torque
Y-type	Nichifu Terminal Industries CO.,LTD.		
	Japan Solderless Terminal MFG CO.,LTD.	VD1.25-B3A	$0.63 \mathrm{~N} \cdot \mathrm{~m}$
Ring-type	Nichifu Terminal Industries CO.,LTD.	TMEV1.25-3	
	Japan Solderless Terminal MFG CO.,LTD.	V1.25-3	

(Fig. 4.2-1)
4.3 Wiring example

ACD-13A-R/M

* To prevent the unit from harmful effects of unexpected high level noise, it is recommended that a surge absorber be installed between the electromagnetic switch coils.
(Fig. 4.3-1)
ACD-13A-S/M 1, W
Single-phase

- Number of units when connecting Shinko SSR in parallel:

SA-300-Z series: 4 units, SA-400 series: 5 units

- For a 24 V AC/DC of power source, do not confuse polarity when using a direct current (DC).
(Fig. 4.3-2)

Current transformer (CT1, CT2) input (W, W3 option)

(1) This alarm is not usable for detecting current under phase control.
(2) Use the current transformer (CT) provided, and pass one lead wire of heater circuit into the hole of the CT.
(3) When wiring, keep CT wire away from AC sources and load wires to avoid the external interference.

[Single-phase heater]

(Fig. 4.3-3)
[Three-phase heater]

(Fig. 4.3-4)

5. Outline of key operation and setting groups

There are 2 setting methods for this controller; Simplified setting (traditional setting method), Group selection. For each setting method, refer to page 20 and those which follow it.

- If the Mode key is pressed for 3 sec at any setting mode, the unit reverts to PV/SV display mode.
(*1) The unit starts from the power-off status.
(*2) For fixed value control, if this key is pressed for $1 \mathrm{sec}, \mathrm{PV} / \mathrm{SV}$ display mode and standby mode can be switched.
For program control, this key runs/stops the control.
(*3) If power is turned off during manual control, the unit starts from PV/SV display mode. Setting with Group selection method is possible during the manual control. After setting, the unit starts from the manual control.
(*4) During program control, this will be program pattern group.
(*5) If option is not added, relevant setting groups will not be displayed.

6. Operation flowchart

Simplified setting and group selection are explained separately.
All setting items are used for the purpose of explanation, however some items will not be indicated depending on the specification.
6.1 Simplified setting (SV, Event and PID setting mode: Effective for Fixed value control)

[Key operation]

- $\downarrow_{\text {mode }}$: This means that if the mode key is pressed, the unit proceeds to the next setting mode.
- $\triangle+$ mode : Press the mode key while pressing the Δ key.
- $\nabla+$ mode : Press the mode key while pressing the ∇ key.
- mode (3 sec): Press the mode key for 3 sec .

[Setting item]

- The PV display indicates setting characters, and the SV display indicates the default value.
- Setting items with dotted lines are optional, and they appear only when the options are ordered.
6.2 Group selection (for Fixed value control)

Setting using the Group selection method is possible. After setting is complete, the unit starts from the manual control.

If set value memory function is selected during Event input allocation, only the selected memory number can be set.
If EVI1 and EVI2 are set to Set value memory function, set value memory numbers will be 1 to 4. (See p.76.)

[Key operation]

- \downarrow mode : This means that if the mode key is pressed, the unit proceeds to the next setting mode.
- Pressing the $\frac{A^{\prime \prime} / 2}{\text { 日MODE }}$ key for 1 sec reverts to the previous setting level.
- If the mode key is pressed for 3 sec at any group or setting item, the unit reverts to PV/SV display mode.

[Setting item]

- The PV display indicates setting characters, and the SV display indicates the default value.
- Setting items with dotted lines are optional, and they appear only when the options are ordered.

6.3 Group selection (for program control)

If the set key is pressed in the Program pattern group, the unit proceeds to the next step number with the same setting item.
Pressing the $\frac{\text { aus }}{\text { siop }}$ key reverts to the previous step.
(*1) The unit starts from the power-off status.
(*2) For Program control, this key runs/ stops the program control.
(*3) If power is turned off during manual control, the unit starts from the PV/SV display mode.
Setting using the Group selection method is possible. After setting is complete, the unit starts from the manual control.

7. Setup

Factory default values of this controller:
Input type: K, -200 to $1370{ }^{\circ} \mathrm{C}$
Control action: PID control (with AT), Reverse action (Heating action)
Event output (EVT1, EVT2): No event
Setup (setting the Input type, control action, Event output type, etc.) should be done before using this controller, according to the user's conditions.
Setup is conducted in the Engineering group.
The Engineering group consists of Input group, Output group, Event input group, Event output group, Program group, Communication group, External setting group,
Transmission output group and Other function group.
If the user's specification is the same as the factory default value of the instrument, it is not necessary to set up the controller. Proceed to Chapter "8. Settings" (pages 52-67).

Factory default values of the Engineering group

- Input group (pages 28-30)

Setting item	Factory default
Input type	$\mathrm{K},-200$ to $1370{ }^{\circ} \mathrm{C}$
Scaling high limit	$1370{ }^{\circ} \mathrm{C}$
Scaling low limit	$-200{ }^{\circ} \mathrm{C}$
Decimal point place	No decimal point
PV filter time constant	0.0 sec
Sensor correction	$0.0{ }^{\circ} \mathrm{C}$

- Output group (pages 31-32)

Setting item	Factory default
OUT1 proportional cycle	Relay contact output: 30 sec Non-contact voltage output: 3 sec Current output: Not available
OUT2 proportional cycle (D \square option)	Relay contact output: 30 sec Non-contact voltage output: 3 sec Current output: Not available
OUT1 high limit	100%
OUT1 low limit	0%
OUT1 ON/OFF hysteresis	$1.0{ }^{\circ} \mathrm{C}$
OUT2 action mode (D \square option)	Air cooling
OUT2 high limit (D \square option)	100%
OUT2 low limit (D \square option)	0%
Overlap/Dead band (D \square option)	$0.0{ }^{\circ} \mathrm{C}$
OUT2 ON/OFF hysteresis (D \square option)	$1.0{ }^{\circ} \mathrm{C}$
Direct/Reverse control action	Reverse action
OUT1 preset output	0.0%
OUT2 preset output (D \square option)	0.0%

- Event input group (El option) (pages 33-34)

Setting item	Factory default
Event input EVI1 allocation	No event
Event input EVI2 allocation	No event
Event input EVI3 allocation	No event
Event input EVI4 allocation	No event

- Event output group (pages 35-42)

Setting item	Factory default
Event output EVT1 allocation	No event
Event output EVT2 allocation	No event
Event output EVT3 allocation (A3 option)	No event
Event output EVT4 allocation (A5 option)	No event
Event output EVT5 allocation (A5 option)	No event

- Program group (p. 43)

Setting item	Factory default
Fixed value control/Program control	Fixed value control
Step time unit	Hour:Minute
Power restore action	Stops after power restoration
Program start temperature	$0^{\circ} \mathrm{C}$

- Communication group (C or C5 option) (p. 44)

Setting item	Factory default
Communication protocol	Shinko protocol
Instrument number	0
Communication speed	9600 bps
Data bit/Parity	7 bits /Even
Stop bit	1
SVTC bias	$0{ }^{\circ} \mathrm{C}$

- External setting group (EA \square or EV \square option) (p. 45)

Setting item	Factory default
Remote/Local	Local
External setting input high limit	$1370{ }^{\circ} \mathrm{C}$
External setting input low limit	$-200{ }^{\circ} \mathrm{C}$
Remote bias	$0{ }^{\circ} \mathrm{C}$

- Transmission output group (TA1 or TV1 option) (p. 46)

Setting item	Factory default
Transmission output	PV transmission
Transmission output high limit	$1370{ }^{\circ} \mathrm{C}$
Transmission output low limit	$-200{ }^{\circ} \mathrm{C}$

- Other function group (pages 47-51)

Setting item	Factory default
Set value lock	Unlock
PID zone function	Not used
SV rise rate	$0{ }^{\circ} \mathrm{C} / \mathrm{min}$
SV fall rate	$0{ }^{\circ} \mathrm{C} / \mathrm{min}$
Indication when output OFF	OFF indication
Backlight selection	All are backlit
PV color	Red
PV color range	$5.0{ }^{\circ} \mathrm{C}$
Backlight time	0 min
Bar graph	MV indication
Deviation unit	$1{ }^{\circ} \mathrm{C}$

7．1 Turn the power supply to the unit ON．

After the power is turned on，the PV display indicates the input type，and the SV display indicates the input range high limit value（thermocouple，RTD input）or scaling high limit value（DC voltage，current input）for approximately 3 seconds．（Table 7．1－1）
During this time，all outputs and the indicators are in OFF status．
Control will then start，indicating the PV（process variable）on the PV display and SV （desired value）on the SV display．
While control output OFF function is working，the PV display indicates
Indication differs depending on the selection in［Indication when output OFF］．
（Table 7．1－1）

Sensor input	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	PV display	SV display	PV display	SV display
K	$\cdots \square$	－	$\cdots \mathrm{F}$	ニーリツ
	\cdots	－400	\cdots	－
J	$\square \triangle 1$	－ 1000	ルロI	1星ごに
R	911	－150	RUIF	－\％－
S	4 T	－17E日	$4 \square 1$	－シロロ
B	GUT1	但家	$\square \square 1 /$	コ $=16$
E	$\square \square 1$	－80\％	$E \square I$	－ハーシ
T	Γ	－100	F－I	
N	$\because \mathrm{MO}$	－¢ シñ	$\because \mathrm{VIF}$	
PL－II	FLET		$\cdots \mathrm{F}$	ニージー
C（W／Re5－26）	$\square \mathrm{L}$	にヨis	$\square \mathrm{F}$	－ 6
Pt100	9	GCra	\cdots	
JPt100	ルに＇	GGOB	\＆F＇F	9 O
Pt100	9	－BG	$\cdots \mathrm{F}$	－昌に
JPt100	ルに下	－SR	MFIF	－ロゴ心
Pt100	Fir ir	$\square 16$	FIFs	ロ10
Pt100	ロrs	S6OCO	ロ19．F	のジコロ
4 to 20 mA DC	410	Scaling high limit value		
0 to 20 mA DC				
0 to 10 mV DC	－			
－10 to 10 mV DC	－1R1012			
0 to 50 mV DC	S成唯：			
0 to 100 mV DC				
0 to 1 V DC	凧吅			
0 to 5 V DC	$5 \square$			
1 to 5 V DC	A5\％			
0 to 10 V DC	日			

7．2 Basic operation of settings

To proceed to each setting mode，refer to each setting mode．
－To set each setting item，use the Δ or ∇ key．
－If the MODE key is pressed，the set value is registered，and the unit proceeds to the next setting item．
If the MODE key is pressed at the last setting item，the unit proceeds to the first setting item．
－Pressing the $\frac{A M M}{\frac{A M O E}{M}}$ key reverts to the previous setting item．
－Pressing the $\frac{\text { A．M }}{\text { 日，Moe }}$ key for 1 sec reverts to the previous setting level（reverts from setting item to each group）．
－If the MODE key is pressed for 3 sec at the setting group or item，the unit reverts to PV／SV display mode．

7.3 Engineering group

7.3.1 Input group

To enter the Input group, follow the procedures below.
(1) $U_{-} E N E$ Press the SET key 4 times in PV/SV display mode.

The unit enters the Engineering group.
(2) $E_{-} I N P$ Press the MODE key once. The unit proceeds to the Input group.
(3)

Press the MODE key once.
The unit proceeds to the 'Input type'.

(*) In the case of DC voltage, current input, if Scaling high limit value< Scaling low limit value is set, PV scaling decrease/input increase is possible.

Character	Setting item, Function, Setting range \quad Factory default
-1	Decimal point place - Selects decimal point place. Available only for DC voltage and current input \square : No decimal point 10: 1 digit after decimal point - bic: 2 digits after decimal point Bor 3 digits after decimal point R!C: 4 digits after decimal point
F1 LI 00	PV filter time constant - Sets PV filter time constant. If the value is set too high, it affects control results due to the delay of response. - Setting range: 0.0 to 100.0 seconds
4080	Sensor correction - Sets the correction value for the sensor. This corrects the input value from the sensor. When a sensor cannot be set at the exact location where control is desired, the sensor measured temperature may deviate from the temperature in the controlled location. When controlling with plural controllers, sometimes the measured temperatures do not concur due to differences in sensor accuracy or dispersion of load capacities. In such a case, the control can be set at the desired temperature by adjusting the input value of sensors. PV after sensor correction= Current PV+ (Sensor correction value) - Setting range: -200.0 to $200.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current input: -2000 to 2000 (The placement of the decimal point follows the selection.)

7.3.2 Output group

To enter the Output group, follow the procedures below.
(1) $\bar{U}_{-} E N /$ Press the SET key 4 times in PV/SV display mode.

The unit enters the Engineering group.
(2) E_I NP

Press the MODE key once. The unit proceeds to the Input group.
(3) E_olir Press the SET key once. The unit proceeds to the Output group.
(4) $c \quad$ Press the MODE key once.
${ }^{30}$ The unit proceeds to the 'OUT1 proportional cycle'.

Character	Setting item, Function, Setting range	Factory default
$\left[\begin{array}{ll}{[} & 30\end{array}\right.$	OUT1 proportional cycle - Sets proportional cycle for OUT1. For relay contact output, if the proportional cy the frequency of the relay action increases, contact is shortened. Not available if OUT1 is in ON/OFF control - Setting range: 1 to 120 seconds	Relay contact: 30 sec Non-contact voltage: 3 sec cycle time is decreased, and the life of the relay or current output type.
c-b	OUT2 proportional cycle - Sets proportional cycle for OUT2. For relay contact output, if the proportional the frequency of the relay action increases, contact is shortened. Not available if the $\mathrm{D} \square$ option is not ordere control. - Setting range: 1 to 120 seconds	Relay contact: 30 sec Non-contact voltage: 3 sec cycle time is decreased, and the life of the relay , or if OUT2 is in ON/OFF
ロLH	- Sets the high limit value of OUT1. Not available if OUT1 is in ON/OFF control - Setting range: OUT1 low limit value to 100% (Current output type: OUT1 low limit value to 105%)	
\square	- Sets the low limit value of OUT1. Not available if OUT1 is in ON/OFF control - Setting range: 0% to OUT1 high limit value (Current output type: -5% to OUT1 high limit value)	
Hut	- Sets ON/OFF hysteresis for OUT1. Available only when OUT1 is in ON/OFF control - Setting range: 0.1 to $1000.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, DC voltage, current input: 1 to 10000 (The placement of the decimal point follows the selection.)	
$\square \Gamma$	OUT2 action mode - Selects OUT2 action from air, oil and water Not available if the $D \square$ option is not ordered or if OUT2 is in ON/OFF control - Fi, Fl : Air cooling (linear characteristic) ai i : Oil cooling (1.5th power of the linear characteristic) mirn: Water cooling (2nd power of the linear characteristic)	

Character	Setting item	Factory default
	－Sets OUT2 high limit value． Not available if the $\square \square$ option is not ordered or if OUT2 is in ON／OFF control －Setting range：OUT2 low limit value to 100% （Current output type：OUT2 low limit value to 105% ）	
	－Sets OUT2 low limit value． Not available if the $D \square$ option is not ordered or if OUT2 is in ON／OFF control －Setting range： 0% to OUT2 high limit value （Current output type：-5% to OUT2 high limit value）	
	－Sets the overlap band or dead band for OUT1 and OUT2． ＋Set value：Dead band，－Set value：Overlap band Available only when the $\mathrm{D} \square$ option is ordered －Setting range：－200．0 to $200.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ， DC voltage，current input：－2000 to 2000 （The placement of the decimal point follows the selection．）	
	－Sets ON／OFF hysteresis for OUT2． Available when the $\square \square$ option is ordered，and when OUT2 is in ON／OFF control action －Setting range： 0.1 to $1000.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ， DC voltage，current input： 1 to 10000 （The placement of the decimal point follows the selection．）	
	－Selects either Reverse（Heating）or Direct（Cooling）control action． －HEGG：Reverse（Heating）action にロロー：Direct（Cooling）action	
际	OUT1 preset output 0.0 \％ －If Preset output 1 or 2 is selected from Event input allocation， OUT1 MV can be set． Preset output 1： Control is performed with the preset output MV if sensor is burnt out during Event Input ON． Preset output 2： Control is performed with the preset output MV when Event Input is ON． －Available only when El option is ordered －Setting range： 0.0 to 100.0 \％（Current output：－5．0 to 105.0% ）	

haracte	n, Setting rang	Factory default
קחר	OUT2 preset output	
	- If Preset output 1 or 2 is selected from Event input allocation, OUT2 MV can be set. Preset output 1: Control is performed with the preset output MV if sensor is burnt out during Event Input ON. Preset output 2: Control is performed with the preset output MV when Event Input is ON. - Available when $\mathrm{D} \square$ and El option is ordered - Setting range: 0.0 to 100.0% (Current output: -5.0 to 105.0%)	

7.3.3 Event input group

This group is available only when the EI option is ordered.
To enter the Event input group, follow the procedures below.
(1) C_ENL

Press the SET key 4 times in PV/SV display mode.
The unit enters the Engineering group.
(2) $E_{-} I \mathrm{NP}$
(3) $E_{-} E V^{\prime \prime}$
(4) EVTI!

Press the MODE key once. The unit proceeds to the Input group.
Press the SET key twice. The unit proceeds to the Event input group.
Press the MODE key once.

The unit proceeds to the Event input EVI1 allocation.

Character	Setting item, Function, Setting range	Factory default
$\text { EVITi } 1$	- Selects Event input EVI1 from Event input allocation table. - Refer to the Event input allocation table.	
$\text { EVTI } 2$	- Selects Event input EVI2 from Event input allocation table. - Refer to the Event input allocation table.	
$[1 \% 1]$	- Selects Event input EVI3 from Event input allocation table. - Refer to the Event input allocation table.	
$\text { EVIT } 4$	- Selects Event input EVI4 from Event input allocation table. - Refer to the Event input allocation table.	

Event input allocation table

Selected value	Event input function	Input ON (Closed)	Input OFF Open)	Remarks
000	No event			
001	Set value memory	$2^{\text {n }}$	1	n=0 to 3 (*1)
002	Control ON/OFF	Control OFF	Control ON	Control output OFF function
003	Direct/Reverse action	Direct action	Reverse action	Always effective
004	Timer Start/Stop	Start	Stop	
005	PV display; PV holding	Holding	Not holding	Ineffective when controlling

Selected value	Event input function	Input ON (Closed)	$\begin{gathered} \hline \text { Input OFF } \\ \text { Open) } \\ \hline \end{gathered}$	Remarks
006	PV display; PV peak value holding	Holding	Not holding	Ineffective when controlling
007	Preset output 1	Preset output (*2)	Standard control	If sensor is burnt out, the unit maintains control with the preset output MV.
008	Auto/Manual control	Manual control	Automatic control	
009	Remote/Local	Remote	Local	Effective only when EA \square or EV \square option is ordered
010	Program mode; RUN/STOP	RUN	STOP	Level action when power-on
011	Program mode; Holding/Not holding	Holding	Not holding	Level action when power-on
012	Program mode; Advance function	Advance	Standard control	Level action when power-on
013	Integral action holding	Integral action Holding	Standard integral action	Control continues with the integral value being held.
014	Preset output 2	Preset output (*2)	Standard control	The unit maintains control with the preset output MV.

Signal edge from OFF to ON or from ON to OFF is valid.
If "010 (Program mode RUN/STOP)" is selected in [Event input EVI1 allocation], the following action will be performed. However, for action when power is turned ON, Level action [ON (Closed) or OFF (Open)] is adopted.

Controller status

Terminals 11-15 [DI1(EVI1)-COM] ON (Closed)

| Standby mode | Program control run | Program control stop
 (Standby mode) |
| :---: | :---: | :--- | :--- |
| | | |

OR computation [if any one is ON (closed), the function activates] begins if the same functions except "001(Set value memory)" have been selected for plural Event inputs.
(*1) The value that 1 (one) is added to 2^{n}, is indicated on the MEMO/STEP display. (e.g.) If $\operatorname{EVI} 1\left(2^{0}\right)=\mathrm{OFF}, \operatorname{EVI} 2\left(2^{1}\right)=\mathrm{ON}$, then $3\left(2^{1}+1\right)$ is indicated.
$2^{0}, 2^{1}, 2^{2}$ and 2^{3} will be allocated to Event input EVI1 to EVI4 respectively, and the Set value memory number will be determined by each value of EVI1 to EVI4. (Refer to Section "9.7 Set value memory function" on p.76.)
(*2) Preset value can be set in [OUT1 preset output], [OUT2 preset output] (p.32, 33) in the Output group.

7.3.4 Event output group

To enter the Event output group, follow the procedures below.
(1) $U_{-} E N G$ Set the SET key 4 times in PV/SV display mode.

The unit enters the Engineering group.
(2) E_I NP P Press the MODE key once. The unit proceeds to the Input group.
(3) E_EV'o Press the SET key several times until characters of the Event output group appears.
(4) EVFD! Press the MODE key once.

The unit proceeds to the 'Event output EVT1 allocation'.

Character	Setting item, Function, Setting range \quad Factory default
EVI	Event output EVT1 allocation - Selects Event output EVT1 from the Event output allocation table. - Refer to the Event output allocation table.
EVI	Event output EVT2 allocation - Selects Event output EVT2 from the Event output allocation table. - Refer to the Event output allocation table.
EVi	Event output EVT3 allocation - Selects Event output EVT3 from the Event output allocation table. Available only when A3 option is ordered - Refer to the Event output allocation table.
$\text { EVIT } 4$	Event output EVT4 allocation - Selects Event output EVT4 from the Event output allocation table. Available only when A5 option is ordered - Refer to the Event output allocation table.
EVI	Event output EVT5 allocation - Selects Event output EVT5 from the Event output allocation table. Available only when A5 option is ordered - Refer to the Event output allocation table.

Event output allocation table

Selected value	Event output function	Proceeding to the lower level with the MODE key	Remarks
000	No event		
001	Alarm output; High limit alarm	Alarm hysteresis \downarrow MODE Alarm action delay timer \downarrow MODE Alarm Energized/De-energized	
002	Alarm output; Low limit alarm	The same as the High limit alarm	
003	Alarm output; High/Low limits	The same as the High limit alarm	
004	Alarm output; High/Low limits independent	The same as the High limit alarm	

Selected value	Event output function	Proceeding to the lower level with the MODE key	Remarks
005	Alarm output; High/Low limit range	The same as the High limit alarm	
006	Alarm output; High/Low limit range independent	The same as the High limit alarm	
007	Alarm output; Process high alarm	The same as the High limit alarm	
008	Alarm output; Process low alarm	The same as the High limit alarm	
009	Alarm output; High limit with standby	The same as the High limit alarm	
010	Alarm output; Low limit with standby	The same as the High limit alarm	
011	Alarm output; High/Low limits with standby	The same as the High limit alarm	
012	Alarm output; High/Low limits with standby independent	The same as the High limit alarm	
013	Timer output linked to "Timer Start/Stop" from Event input allocation.	Timer output delay action \downarrow MODE Timer output time unit \downarrow MODE OFF delay time 1 MODE ON delay time	Select "Timer Start/Stop" from Event input allocation. (p.33)
014	Timer output linked to "Timer Start/Stop" from Event input allocation. Control ON during timer operation. Control OFF after time is up.	The same as the above	The same as the above
015	Heater burnout alarm output	Heater rated current MODE Heater burnout alarm 1 value MODE Heater burnout alarm 2 value	Rated current 20 A or 100 A. Settable within the rated current (*)
016	Loop break alarm output	Loop break alarm time \downarrow MODE Loop break alarm span	
017	Time signal output	Time signal output step \downarrow MODE Time signal OFF time 1 MODE Time signal ON time	Time signal output is turned off when the performing step is complete.
018	Output during AT		Outputs during AT
019	Pattern end output		Program control

- If an alarm type is changed, the alarm set value becomes $\mathbf{0}(0.0)$.
- If "001 to 012 (Alarm output)" is selected: Individual setting for event outputs If "013 to 019" is selected: Common setting to the plural event outputs
(*) Available only when W or W3 option is ordered.

Pattern end output

After the program control is completed, pattern end output is turned ON. The following program pattern shows that the temperature rises to $200{ }^{\circ} \mathrm{C}$ for 1 hour, and stays at $200{ }^{\circ} \mathrm{C}$ for 2 hours after program control starts.

Step	1	2
Step SV	$200{ }^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$
Step time	$1: 00$	$2: 00$

Pattern end output is shown below in (Fig. 7.3.4-1).

Program control stops.
Pattern end output ON
(Fig. 7.3.4-1)

Pattern end output is turned off by the $\frac{\text { nuN }}{\text { siop }}$ key or by power-off.

- Alarm output setting items [When alarm output (001 to 012) is selected]

Character	Setting item, Function, Setting range	Factory default
П Iņ	Alarm hysteresis - Sets Alarm hysteresis. - Setting range: 0.1 to $1000.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current input: 1 to 10000 (The placement of the decimal point follows the selection.)	
П i	Alarm action delay timer - Sets Alarm action delay timer. When setting time has elapsed after the input enters the alarm output range, the alarm is activated. - Setting range: 0 to 10000 sec	
Q in ino (*)	Alarm Energized/De-energized - Selects Energized/De-energized status for Alarm. (Refer to "Alarm action Energized/De-energized".) - NaM! : Energized FE!	

(*): If "001 (Alarm output; High limit alarm) to 012 (Alarm output; High/Low limits with standby independent" is selected in [Event output EVT2 to EVT5 allocation],

[Alarm action Energized/De-energized]

When [Alarm Energized (Nin) is selected, EVT1 output (terminals 9-10) is conductive (ON) while the EVT1 indicator is lit.
EVT1 output is not conductive (OFF) while EVT1 indicator is not lit.
When [Alarm De-energized (RE' is not conductive (OFF) while EVT1 indicator is lit.
EVT1 output is conductive (ON) while EVT1 indicator is not lit.
High limit alarm (when Energized is set) High limit alarm (when De-energized is set)

(Fig. 7.3.4-2)

(Fig. 7.3.4-3)

For EVT2 to EVT5, the alarm action is the same as that of EVT1.
For EVT2 to EVT5, read "EVT2 to EVT5" for "EVT1".

- EVT2 output (terminals 7-8) (A3 option: terminals 8-10)
- EVT3 output (terminals 7-10)
- EVT4 output (terminals 29-30)
- EVT5 output (terminals 28-30)
－Timer output setting items［When Timer output $(013,014)$ is selected］
Available only when the El option is ordered．

Character	Setting item，Function，Setting range	Factory default
	Timer output delay action －Selects a Timer output action． －םiNU：ON delay time に品：OFF delay time ロハローに：ON／OFF delay time －Delay action DLYON：ON delay time setting DLYOFF：OFF delay time setting （Fig．7．3．4－4）	ON delay time
$\mathrm{CMM}_{\mathrm{MH}} \mathrm{N}$	Timer output time unit －Selects Timer output time unit． －Mi＂M：Minute ヶに品：Second	Minute
－	OFF delay time －Sets OFF delay time． －Setting range： 0 to 10000 （Time unit follows the selection in［Timer output time unit］．）	
－Jaiv	ON delay time －Sets ON delay time． －Setting range： 0 to 10000 （Time unit follows the selection in［Timer output time unit］．）	

－Heater burnout alarm output setting items［When Heater burnout alarm output （015）is selected］
Available only when W，W3 option is ordered．

Character	Setting item，Function，Setting range \quad Factory default
$H_{-}^{L i}$	Heater rated current －Selects heater rated current． －If heater rated current is changed，Heater burnout alarm 1 and 2 value will return to 0.0 ． －日明品：20．0A MRロF：100．0 A
H Hand CT1 current alternating display （on the PV display）	Heater burnout alarm 1 value －Sets the heater current value for Heater burnout alarm 1. Setting to 0.0 disables the alarm． CT1 current value and character H are indicated alternately on the PV display． When OUT1 is ON，the CT1 current value is updated． When OUT1 is OFF，the unit memorizes the previous value when OUT1 was ON． Upon returning to set limits，the alarm will stop． －Rated current：20．0 A（ 0.0 to 20．0 A），100．0 A（ 0.0 to 100．0 A）
HC HiE and CT2 current alternating display （on the PV display）	Heater burnout alarm 2 value －Sets the heater current value for Heater burnout alarm 2. Setting to 0.0 disables the alarm． CT2 current value and characters $-\boldsymbol{A}$ are indicated alternately on the PV display． When OUT1 is ON，the CT2 current value is updated． When OUT1 is OFF，the unit memorizes the previous value when OUT1 was ON． Upon returning to set limits，the alarm will stop． Available only when W3 option is ordered －Rated current：20．0 A（0．0 to 20．0 A），100．0 A（0．0 to 100．0 A）

- Loop break alarm output setting items [When Loop break alarm output (016) is selected]

Character	Setting item, Function, Setting range	Factory default
$\begin{equation*} \angle O_{-} \Gamma \tag{0} \end{equation*}$	Loop break alarm time - Sets the time to assess the Loop break al - Setting to 0 (zero) disables the alarm. - Setting range: 0 to 200 minutes	0 minutes rm.
LO_{-}	Loop break alarm span - Sets the temperature to assess the Loop - Setting to 0 (zero) disables the alarm. - Setting range: 0 to $150{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right), 0.0$ to 150 DC voltage, current input: 0 to 1500 (The	$0{ }^{\circ} \mathrm{C}$ reak alarm. ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ placement of the decimal follows the selection.)

Loop break alarm

When the control action is Reverse (Heating):

- If the PV does not reach the span setting within the time allotted to assess the loop break alarm (after the MV has reached 100% or the OUT high limit value), the alarm will be activated.
- Likewise, if the PV does not drop to the span setting within the time allotted to assess the loop break alarm (after the MV has reached 0% or the OUT low limit value), the alarm will be activated.

When the control action is Direct (Cooling), read "reach" for "drop to" and vice versa.

- Time signal output setting items [When Time signal output (017) is selected]

haracter	Setting item, Function, Setting range	Factory default
FL_Avo,	- Sets step number for time signal output performance - Setting range: 1 to 15	
FL_0F	- Sets the Time signal output OFF time. - Setting range: 00:00 to 99:59 (Time unit follows the selection in [Step time unit] in the Program group.)	
	- Sets the Time signal output ON time. - Setting range: 00:00 to 99:59 (Time unit follows the selection in [Step time unit] in the Program group.)	

Time signal output

Time signal output activates during Time signal output ON time within the set step for which Time signal output is performed.
Time signal output ON time follows Time signal output OFF time after the program control starts.
The following program pattern shows that the temperature rises to $200{ }^{\circ} \mathrm{C}$ for 1 hour, and stays at $200{ }^{\circ} \mathrm{C}$ for 2 hours after program control starts.

Step	1	2
Step SV	$200{ }^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$
Step time	$1: 00$	$2: 00$

Time signal output (Fig. 7.3.4-5) is shown when set as follows.

- The step for which Time signal output is performed: 2
- Time signal output OFF time setting: 0:30
- Time signal output ON time setting: 1:00

Time signal output is effective within the step set in [Time signal output step]. For example, if Time signal output ON time is set to "2:00" at the above,
Time signal output is turned OFF when step 2 is completed.

7．3．5 Program group

To enter the Program group，follow the procedures below．
（1）［G＿ENL
Set the SET key 4 times in PV／SV display mode．
The unit enters the Engineering group．
（2）E＿INP Press the MODE key once．The unit proceeds to the Input group．
（3）E＿PRO Press the SET key several times until characters of the Program group appears．
（4）PREMM Press the MODE key once．
The unit proceeds to the＇Fixed value control／Program control＇．

Character	Setting item，Function，Setting range	Factory default
－RLich	－Selects Fixed value control or Program control． －Fi n阳回：Program control	
$M 4$	－Selects the Step time unit for the program control． －Available only for the program control． 上曰：Minute：Second	
वREI	Power restore action －Selects the program status if a power Stops（standby）after power restoration． failure occurs mid－program and it is restored． －Available only for the program control －, ar：Stops（Standby）after power restoration． に事：Continues after power restoration． Hald Suspended（On hold）after power restoration．	
L＿$\square^{1 \prime}$	Program start temperature $0{ }^{\circ} \mathrm{C}$ －Sets the step temperature when program starts． －Available only for the program control －Setting range：Scaling low limit value to Scaling high limit value	

7．3．6 Communication group

Available when C，C5 option is ordered．
To enter the Communication group，follow the procedures below．
（1）$U_{-} E N[$ Set the SET key 4 times in PV／SV display mode．
The unit enters the Engineering group．
（2）$E_{-} / \mathrm{N} P$ Press the MODE key once．The unit proceeds to the Input group．
（3）E＿coM Press the SET key several times until characters of the Communication group appear．
（4）$\subset M$ ML
The unit proceeds to the＇Communication protocol＇．

Character	Setting item，Function，Setting range	Factory default
CMLL	－Selects communication protocol． －Maril ：Shinko protocol バローに：Modbus ASCII mode ＂にロート：Modbus RTU mode	
CMAVD	－Sets the instrument number． The instrument numbers should be set one by one when multiple instruments are connected in Serial communication，otherwise communication is impossible． －Setting range： 0 to 95	
［MLT $_{96}$	－Selects a communication speed equal to that of the host computer． －- GE： 9600 bps －侸㤩： 19200 bps コーロー， 38400 bps	
CMIT	－Selects data bit and parity． －ENはM： 8 bits／No parity TVロ保： 7 bits／No parity 日ロば【： 8 bits／Odd Tロロース： 7 bits／Odd	
保	Stop bit －Selects the stop bit． －ロル 1： 1 ローコ：2	1
$L^{\prime \prime} \square^{\prime}$	－Control desired value（SV）adds SVTC bias value to the value received by the SVTC command． －Available only when Shinko protocol is selected in［communication protocol］． －Setting range：Converted value of $\pm 20 \%$ of the input span DC voltage，current input：$\pm 20 \%$ of the scaling span（The placement of the decimal point follows the selection．）	

7.3.7 External setting group

Available only when the EA \square or EV \square option is ordered.
To enter the External setting group, follow the procedures below.
(1) U_{-}ENE Set the SET key 4 times in PV/SV display mode.

The unit enters the Engineering group.
(2) $E_{-} / N_{P} \mid$ Press the MODE key once. The unit proceeds to the Input group.
(3) E_EVT Press the SET key several times until characters of the External setting group appears.
(4) $R E M$ Lockl \quad Press the MODE key once.

The unit proceeds to the 'Remote/Local'.

Character	Setting item, Function, Setting range	
	Remote/Local - Selects Remote or Local setting of the SV (desired value). - LaCFIL: Local (The SV can be set by front keypad.) REV: Remote (The SV can be set in analog by the remote operation externally.)	
	External setting input high limit - Sets External setting input high limit value. [For EA1 (4-20 mA) option, the value corresponds to 20 mA input.] - Setting range: External setting input low limit to Input range high limit (The placement of the decimal point follows the selection.)	
	External setting input low limit - Sets External setting input low limit value. [For EA1 (4-20 mA) option, the value corresponds to 4 mA input.] - Setting range: Input range low limit to External setting input high limit (The placement of the decimal point follows the selection.)	
	Remote bias $0{ }^{\circ} \mathrm{C}$ - During remote action, SV (desired value) adds the remote bias value. - Setting range: Converted value of $\pm 20 \%$ of the input span DC voltage, current input: $\pm 20 \%$ of the scaling span (The placement of the decimal point follows the selection.)	

7．3．8 Transmission output group

Available only when TA1 or TV1 option is ordered．
To enter the Transmission output group，follow the procedures below．
（1） U＿ENE 2
Set the SET key 4 times in PV／SV display mode．
The unit enters the Engineering group．
（2）E＿I $N P$ Press the MODE key once．The unit proceeds to the Input group．
（3）E＿ 「R月 Press the SET key several times until characters of the Transmission output group appears．
（4）Γ Rour Press the MODE key once．
The unit proceeds to the＇Transmission output＇．

Character	Setting item，Function，Setting range	Factory default
$\Gamma Q_{P V}$	Transmission output type －Selects transmission output type． －Full：PV（process variable）transmiss － $1, \mathrm{~B}:$ SV（desired value）transmission ＂ill：MV（manipulated variable）trans －in＇ \square DV（deviation）transmission	PV transmission ion mission
「RLH	Transmission output high limit －Sets the Transmission output high limit val ［For TA1（4－20 mA）option，the value corre －Setting range： PV，SV transmission：Transmission output high limit value MV transmission：Transmission output low DV transmission：Transmission output low	$1370{ }^{\circ} \mathrm{C}$ ue． ponds to 20 mA output．］ ow limit to Input range limit value to 105.0 （\％） imit to Scaling span
FRLL	Transmission output low limit －Sets the Transmission output low limit valu ［For TA1（ $4-20 \mathrm{~mA}$ ）option，the value corre －Setting range： PV，SV transmission：Input range low limit high limit value MV transmission：－5．0 to Transmission output DV transmission：－Scaling span to Transmi	$-200{ }^{\circ} \mathrm{C}$ e． ponds to 4 mA output．］ o Transmission output ut high limit value（\％） sion output high limit value

7.3.9 Other function group

To enter Other function group, follow the procedures below.
(1) U_{-}ENI \int Set the SET key 4 times in PV/SV display mode.

The unit enters the Engineering group.
(2) E_INP Press the MODE key once. The unit proceeds to the Input group.
(3) $E_{-}\left\ulcorner H\right.$ Press the SET key several times or $\frac{A / M}{8 \text { MOOE }}$ key once until characters of Other function group appears.
(4) Lock. Press the MODE key once.

The unit proceeds to the 'Set value lock'.

Character	Setting item, Function, Setting range	Factory default
	Set value lock - Locks the set values to prevent setting errors. The setting item to be locked depends on the selection. - With any selection from Lock 1 to Lock 4, AT or Auto-reset cannot be carried out. - ---- (Unlock): All set values can be changed. Lar (Lock 1): None of the set values can be changed. LaEE (Lock 2): Only SV (desired value) can be changed. LacI (Lock 3): None of the set values can be changed as Lock 1. LaI (Lock 4): SV and Alarm value can be changed. Other set values cannot be changed.	
1	PID zone function - Selects "Not used/Used" of the PID zone function. Control is performed by automatic change of PID zone parameters, which are linked to the SV (or step SV for program control). PID zone value can be set in the PID group. Refer to "PID zone function" on p. 49. - ManE Not used :'G: Used	
वRİ	SV rise rate - Sets SV rise rate (rising value for 1 minute) When the SV is adjusted, it approaches th rate-of-change (${ }^{\circ} \mathrm{C} / \mathrm{min},{ }^{\circ} \mathrm{F} / \mathrm{min}$). When the power is turned on, the control approaches the SV by the rate-of-change. - Setting to 0 or 0.0 disables this function. - Setting range: 0 to $10000{ }^{\circ} \mathrm{C} / \mathrm{min}\left({ }^{\circ} \mathrm{F} / \mathrm{min}\right)$ Thermocouple, RTD input with a decimal po DC voltage, current input: 0 to 10000/min decimal poin	$0{ }^{\circ} \mathrm{C} /$ minute new SV by the preset arts from the PV and t: 0.0 to $1000.0^{\circ} \mathrm{C} / \mathrm{min}$ ($\mathrm{F} / \mathrm{min}$) The placement of the follows the selection.)

Character	Setting item，Function，Setting range	Factory default
वRİ	SV fall rate －Sets SV fall rate（falling value for 1 minute）． When the SV is adjusted，it approaches the new SV by the preset rate－of－change（ ${ }^{\circ} \mathrm{C} / \mathrm{min},{ }^{\circ} \mathrm{F} / \mathrm{min}$ ）．When the power is turned on，the control starts from the PV and approaches the SV by the rate－of－change． Setting to 0 or 0.0 disables this function． －Setting range： 0 to $10000{ }^{\circ} \mathrm{C} / \mathrm{min}\left({ }^{\circ} \mathrm{F} / \mathrm{min}\right)$ Thermocouple，RTD input with a decimal point： 0.0 to $1000.0{ }^{\circ} \mathrm{C} / \mathrm{min}\left({ }^{\circ} \mathrm{F} / \mathrm{min}\right)$ DC voltage，current input： 0 to 10000／min（The placement of the decimal point follows the selection．）	
	－Selects the indication when control output is OFF． －bIFロ：OFF indication FarF：No indication FU：PV indication F：P：PV indication＋Any event from EVT1 to EVT5 output	
	－Selects the display to backlight． －FIL ：All（displays and indicators）are backlit． Pu，$\quad \mathrm{B}$ ：Only PV display is backlit． L，$\square \square$ ：Only SV display is backlit． Fi， D ：Only Action indicators are backlit． $F=1, \square: P V$ and SV displays are backlit． F1，$F_{1} \mathrm{~B}$ ：PV display and Action indicators are backlit． －1， $\mathrm{F}_{1} \mathrm{~B}$ ：SV display and Action indicators are backlit．	
－1	－Selects PV display color．See＂PV display color selection＂on p．50． －Rーバ分：Green 保に：Red 保：Orange R1，When any alarm output from EVT1 to EVT5 is ON，PV color turns from green to red． Fit：When any alarm output from EVT1 to EVT5 is ON，PV color turns from orange to red． Fו，PV color changes continuously（Orange \rightarrow Green \rightarrow Red）． $F: F$ PV color changes continuously（Orange \rightarrow Green \rightarrow Red）， and simultaneously when any alarm output from EVT1 to EVT5 is ON（Red）．	
CLR	PV color range －When Flv（PV color changes contin color changes continuously＋Any alarm ou ON ）is selected in［ PV color］，the value of be set．See＂PV display color selection＂on －Setting range： 0.1 to $200.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ， DC voltage，current input： 1 to 2000 （The p point	$5.0^{\circ} \mathrm{C}$ uously）or RFM（PV put from EVT1 to EVT5 is reen PV color range can p． 50. acement of the decimal follows the selection．）

Character	Setting item，Function，Setting range	Factory default
位	－Sets time to backlight from no operation status until backlight is switched off． When set to 0 ，the backlight remains ON ． Backlight relights by pressing any key while backlight is OFF． －Setting range： 0 to 99 minutes	
480	Bar graph －Selects the MV or DV indication on the bar graph．（See p．51．） －Mil：MV（manipulated variable）indication 日i＇ \square DV（deviation）indication ハロロバい：No indication	
－lvind	－Sets amount of deviation for the positive（or negative）side of one division of the bar graph．（See p．51．） －Setting range： 1 to Converted value of 20% of the input span	

［PID zone function］

When PID zone function＂Used＂is selected，and if SV（or Step SV for the program control）is lower than PID zone value，the control is performed with PID zone parameters of the relevant PID zone value．
If the next PID zone value is lower than the current one，the next PID zone parameters will not be effective．
During program control，the currently performing step SV is applicable to the PID zone．
In the case of（Fig．7．3．9－1），＂SV： $150{ }^{\circ} \mathrm{C}$＂is higher than＂PID zone value $1: 100{ }^{\circ} \mathrm{C}$＂， and lower than＂PID zone value 2： $200{ }^{\circ} \mathrm{C}$＂，so control is performed using PID zone parameters of PID zone value 2.
As PID zone value 4 has not been set，even if SV is higher than PID zone value 3 ， control is performed using PID zone parameters of PID zone value 3.

［PV display color selection］
（Table 7．3．9－1）

PV color selection	PV color
	Constantly green
吅时：Red	Constantly red
arial Orange	Constantly orange
FIL from EVT1 to EVT5 is ON： Green \rightarrow Red ${ }^{*}$ ）	When alarm output OFF：Green When any alarm output from EVT1 to EVT5 is ON ，the PV color turns from green to red．
output from EVT1 to EVT5 is ON： Orange $\rightarrow \operatorname{Red}$（＊）*	When alarm output OFF：Orange When any alarm output from EVT1 to EVT5 is ON ，the PV color turns from orange to red．
F，口in： PV color changes continuously （Orange \rightarrow Green \rightarrow Red）．	PV color changes depending on the color range setting． －PV is lower than［SV－PV color range］：Orange －PV is within［SV $\pm P V$ color range］：Green －PV is higher than［SV＋PV color range］：Red Hys：Set point of PV color range （Fig．7．3．9－2）
APRT PV color changes continuously （Orange \rightarrow Green \rightarrow Red）， and at the same time any alarm output from EVT1 to EVT5 is ON（Red）．（＊）	PV color changes depending on the PV color range setting． When any alarm output from EVT1 to EVT5 is ON，the PV display turns red． －PV is lower than［SV－PV color range］：Orange －PV is within［SV $\pm P V$ color range］：Green － PV is higher than［SV＋PV color range］：Red －Any alarm output from EVT1 to EVT5 is ON：Red Hys：Set point of PV color range EVT1：EVT1 value（High limit alarm） EVT2：EVT2 value（Low limit alarm） （Fig．7．3．9－3）

（＊）This is available for Event outputs EVT1 to EVT5 allocations 001 to $012 . ~_{\text {．}}$ This is not available for allocations 013 to 019．（Pages 35－36）

[Bar graph selection]

MV or DV are indicated on the bar graph.
With MV indication, if Heating/Cooling control output is ordered, bar graph indication for OUT1 MV and OUT2 MV differs as shown below.

Function	Contents	Indication
MV indication	Scale is -5 to 105%, and segments light increasingly to the right in accordance with the OUT1 MV.	
MV indication (when Heating/ Cooling control output is ordered.)	Scale shows that center is 0%, the right end (OUT1 MV) is 105 \%, and the left end (OUT2 MV) is 105 \%. Segments for OUT1 MV light increasingly to the right from the center. Segments for OUT2 MV light increasingly to the left from the center.	Light increasingly to the left in accordance with the OUT2 MV.
DV indication	In the case of deviation zero (0), central 2 segments light. For positive deviation, segments light increasingly to the right. For negative deviation, segments light increasingly to the left.	When deviation unit is set to 1 : (e.g.) Deviation 0 (SV=200, PV=200) Central 2 segments light. (e.g.) Negaitve deviation (SV=200, $\mathrm{PV}=196$) 4 segments of deviation except the central segment light increasingly to the left in accordance with the deviation.

8. Settings

There are 2 setting methods for this controller: Simplified setting, Group selection.

8.1 Simplified setting method

Simplified setting method, which is effective for the Fixed value control, is the same method as when setting standard Shinko controllers.

8.1.1 SV setting mode

To enter the SV setting mode, press the MODE key once in PV/SV display mode. If Set value memory function is selected from Event input allocation (p.33), only the memory number selected via terminal connection can be set.
To set other Set value memory number, select it again by connecting terminals.

Character	Setting item, Function, Setting range	Factory default
$\begin{array}{\|cc\|} \hline 4 & 0 \\ -1 & 0 \end{array}$	SV - Sets SV (desired value). - Setting range: Scaling low limit to Scalin	$0^{\circ} \mathrm{C}$ high limit

8.1.2 Event setting mode

To enter Event setting mode, press the MODE key while pressing the \triangle key in PV/SV display mode.
If Set value memory function is selected from Event input allocation (p.33), only the memory number selected via terminal connection can be set.
To set other Set value memory number, select it again by connecting terminals.

Character	Setting item, Function, Setting range \quad Factory default
	EVT1 alarm value - Sets EVT1 alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT1 allocation]. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
$\begin{array}{lll} \cap & \\ -1 & \\ 0 \end{array}$	EVT1 high limit alarm value - Sets EVT1 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT1 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.

Character	Setting item，Function，Setting range \quad Factory default
	EVT2 alarm value －Sets EVT2 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT2 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
ВコН	EVT2 high limit alarm value －Sets EVT2 high limit alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT2 allocation］． For the independent alarms（such as High／Low limits independent， High／Low limit range independent and High／Low limits with standby independent），the EVT alarm value matches the low limit side，and EVT high limit alarm value matches the high limit side． －Setting range：Refer to（Table 8．1．2－1）on p．55．
时	EVT3 alarm value －Sets EVT3 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT3 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
$\begin{array}{ll} \text { ВコН } & \\ -1 & 0 \end{array}$	EVT3 high limit alarm value －Sets EVT3 high limit alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT3 allocation］． For the independent alarms（such as High／Low limits independent， High／Low limit range independent and High／Low limits with standby independent），the EVT alarm value matches the low limit side，and EVT high limit alarm value matches the high limit side． －Setting range：Refer to（Table 8．1．2－1）on p．55．

Character	Setting item, Function, Setting range \quad Factory default
	EVT4 alarm value - Sets EVT4 alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT4 allocation]. - Setting range: Refer to (Table 8.1.2-1) on p.55.
	EVT4 high limit alarm value - Sets EVT4 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT4 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p.55.
R5	EVT5 alarm value - Sets EVT5 alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation]. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
BSH	EVT5 high limit alarm value - Sets EVT5 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.

(Table 8.1.2-1)

Alarm type	Setting range
High limit (deviation setting)	$-\left(\right.$ Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
Low limit (deviation setting)	$-\left(\right.$ Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits (deviation setting)	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits independent (deviation setting)	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limit range (deviation setting)	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limit range independent (deviation setting)	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
Process high	Input range low limit to input range high limit value ${ }^{*} 2$
Process low	Input range low limit to input range high limit value ${ }^{*} 2$
High limit with standby (deviation setting)	$-\left(\right.$ Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
Low limit with standby (deviation setting)	$-\left(\right.$ Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits with standby (deviation setting)	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits with standby independent (deviation setting)	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$

*1: For DC voltage, current input, the input span is the same as the scaling span.
*2: For DC voltage, current input, input range low (or high) limit value is the same as scaling low (or high) limit value.

8.1.3 PID setting mode

To enter PID setting mode, press and hold the ∇ and MODE key (in that order) for 3 seconds in PV/SV display mode.
If PID zone function "Used" is selected, PID zone parameters depends on the SV. PID zone numbers are indicated on the MEMO/STEP display.

Character	Setting item, Function, Setting range \quad Factory default
	OUT1 proportional band - Sets the proportional band for OUT1. OUT1 becomes ON/OFF control when set to 0 or 0.0. - Setting range: 0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ (DC voltage, current input: 0.0 to 1000.0%)
$\square_{-1} b$	OUT2 proportional band - Sets the proportional band for OUT2. OUT2 becomes ON/OFF control when set to 0.0. Not available if $D \square$ option is not ordered, or if OUT1 is in ON/OFF control. - Setting range: 0.0 to 10.0 times (Multiplied value of OUT1 proportional band)
1 -1 200	Integral time - Sets integral time for OUT1. Setting the value to 0 disables this function. Not available if OUT1 is in ON/OFF control. Auto-reset can be performed when PD is control action (I=0). - Setting range: 0 to 3600 seconds
d	Derivative time - Sets derivative time for OUT1. Setting the value to 0 disables this function. Not available if OUT1 is in ON/OFF control. - Setting range: 0 to 1800 seconds
$\begin{array}{ll} \hline \text { RONW } \\ -1 & 50 \end{array}$	ARW - Sets anti-reset windup (ARW) for OUT1. Available only when PID is control action. - Setting range: 0 to 100 \%
PLEF	Manual reset - Sets the reset value manually. Available only when P or PD is control action. - Setting range: ± 1000.0 DC voltage, current input: The placement of the decimal point follows the selection.

Character	Setting item, Function, Setting range	Factory default
वดг	OUT1 rate-of-change	0 \%/second
-	- Sets changing value of OUT1 MV for 1 second. Setting the value to 0 disables this function. Not available if OUT1 is in ON/OFF control. See "OUT1 rate-of-change" on p.57. - Setting range: 0 to $100 \% /$ second	

[OUT1 rate-of-change]

For Heating control, if PV is lower than SV, output is generally turned from OFF to ON as shown in (Fig. 8.1.3-1).
If OUT1 rate-of-change is set, the output can be changed by the rate-of-change (Fig. 8.1.3-2).

This control is suitable for high temperature heaters (which are made from molybdenum, tungsten or platinum, etc., and used at approx. 1500 to $1800{ }^{\circ} \mathrm{C}$) which are easily burnt out from turning on electricity rapidly.

- Usual output - Output when Output rate-of-change is set

(Fig. 8.1.3-1)
(Fig. 8.1.3-2)

8．2 Group selection

There are 4 groups to be set for the controller；SV，Event group，PID group，AT group and Engineering group．
Select a group with the SET key，and set each item in the group with the MODE key．

PV display	Group	Setting items
L－－	－SV，Event group （Fixed value control）	－SV，Event（EVT1 to EVT5） （Fixed value control）
	－Program pattern group （Program control）	－Step SV，Step time，Wait value， Event（EVT1 to EVT5） （Program control）
	PID group	PID parameters
E，Bira	AT group	AT／Auto－reset Perform／Cancel，AT bias
E－Eがい	Engineering group	Input parameters，Output parameters， Event output parameters，Program parameters，Other functions

For details of the Engineering group，see pages 28 to 51.

8．2．1 SV，Event group（for Fixed value control）

Sets SV，Event（EVT1 to EVT5）in this group．
If Set value memory function is selected from Event input allocation，setting items in this group can be set for the selected memory numbers．

To enter the SV，Event group，follow the procedures below．
（1）E＿ל Press the SET key once in PV／SV display mode．
The unit proceeds to the SV，Event group．
（2） $\begin{array}{cc}4 & 0 \\ -1 & 0\end{array}$
Press the MODE key once．The unit proceeds to the＇SV1＇setting．

Character	Setting item，Function，Setting range \quad Factory default
4 0 -1 0	SV1 $0{ }^{\circ} \mathrm{C}$ －Sets SV1（desired value）． －Setting range：Scaling low limit to Scaling high limit
$\begin{array}{\|cc} B 1 & \\ -1 & 0 \end{array}$	EVT1 alarm value －Sets EVT1 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT1 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p．55．

Character	Setting item，Function，Setting range \quad Factory default
$\begin{array}{lll} n & \\ -1 & 0 \end{array}$	EVT1 high limit alarm value －Sets EVT1 high limit alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT1 allocation］． For the independent alarms（such as High／Low limits independent， High／Low limit range independent and High／Low limits with standby independent），the EVT alarm value matches the low limit side，and EVT high limit alarm value matches the high limit side． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
日コ	EVT2 alarm value －Sets EVT2 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT2 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
ВコН	EVT2 high limit alarm value －Sets EVT2 high limit alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT2 allocation］． For the independent alarms（such as High／Low limits independent， High／Low limit range independent and High／Low limits with standby independent），the EVT alarm value matches the low limit side，and EVT high limit alarm value matches the high limit side． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
时	EVT3 alarm value －Sets EVT3 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT3 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
	EVT3 high limit alarm value －Sets EVT3 high limit alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT3 allocation］． For the independent alarms（such as High／Low limits independent， High／Low limit range independent and High／Low limits with standby independent），the EVT alarm value matches the low limit side，and EVT high limit alarm value matches the high limit side． －Setting range：Refer to（Table 8．1．2－1）on p． 55.

Character	Setting item, Function, Setting range \quad Factory default
$\begin{array}{\|cc\|} \hline 14 & 0 \\ -1 & 0 \end{array}$	EVT4 alarm value - Sets EVT4 alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT4 allocation]. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
П4Н	EVT4 high limit alarm value - Sets EVT4 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT4 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
R5	EVT5 alarm value - Sets EVT5 alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation] - Setting range: Refer to (Table 8.1.2-1) on p. 55.
RSH	EVT5 high limit alarm value - Sets EVT5 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
	Up to 15 files of the Set value memory selected from Event input allocation can be set.
$\begin{array}{\|cc\|} \hline \text { - } & \\ \hline 5 & 0 \end{array}$	EVT5 high limit alarm value - Sets EVT5 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.

8．2．2 Program pattern group（for program control）

Sets Step SV，Step time，Wait value and Event（EVT1 to EVT5）in this group．
A maximum of 15 steps of program pattern can be created．

Step number	1	2
$200^{\circ} \mathrm{C}$		

This program pattern shows that the temperature rises to $200{ }^{\circ} \mathrm{C}$ for 1 hour， and stays at $200{ }^{\circ} \mathrm{C}$ for 2 hours．

In this case，Step 1 SV is $200{ }^{\circ} \mathrm{C}$ and Step 1 time is 1 hour．
（Fig．8．2．2－1）

［Wait function］

During the program control run，the program does not proceed to the next step until the deviation between PV and SV enters SV \pm Wait value at the end of step． The STEP indicator flashes while the Wait function is working．

The Wait function is released on the condition that：
When program pattern is rising：PV is higher than SV－Wait value
When program pattern is falling：PV is lower than $\mathrm{SV}+\mathrm{Wait}$ value

Step	1	2		3	4	5

As PV is not in the range of $\mathrm{SV} \pm$ Wait value，the unit is in Wait status，and does not proceed to Step 2.
The STEP indicator flashes during Wait action（T time）．
．．．．．．．．．．．．：Program pattern delayed by T due to the Wait function
（Fig．8．2．2－2）

To enter the Program pattern group, follow the procedures below.
(1) U_ 4 Press the SET key once in PV/SV display mode.

The unit proceeds to the Program pattern group.
(2) $\begin{array}{rr}4 & 0 \\ -1 & \text { Press the MODE key once. }\end{array}$

The unit proceeds to Step 1 SV setting.

Character	Setting item, Function, Setting range \quad Factory default
$\left\lvert\, \begin{array}{cc}4 & 0 \\ -1 & \end{array}\right.$	Step 1 SV - Sets Step 1 SV (desired value). - Setting range: Scaling low limit value to Scaling high limit value
$\begin{array}{ll} \text { II ME } \\ 1 & M L \\ -1 & \text { OUn O} \end{array}$	Step 1 time - Sets Step 1 time. - Setting range: 00:00 to 99:59
wini ir	Step 1 wait value - Sets Step 1 wait value. This function prevents the step from proceeding to the next one until PV enters the range of SV \pm Wait value regardless of the step time. Setting the value to $\mathbf{0}$ or $\mathbf{0 . 0}$ disables this function. - Setting range: 0 to Converted value of 20% of the input span
	Step 1 EVT1 alarm value $0^{\circ} \mathrm{C}$ - Sets Step1 EVT1 alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT1 allocation]. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
$\begin{array}{cc} \cap \mathrm{IH} & \\ -1 & 0 \end{array}$	Step 1 EVT1 high limit alarm value - Sets Step 1 EVT1 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT1 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.

Character	Setting item，Function，Setting range \quad Factory default
日コ	Step 1 EVT2 alarm value －Sets Step 1 EVT2 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT2 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
ВЈН	Step 1 EVT2 high limit alarm value －Sets Step 1 EVT2 high limit alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT2 allocation］． For the independent alarms（such as High／Low limits independent， High／Low limit range independent and High／Low limits with standby independent），the EVT alarm value matches the low limit side，and EVT high limit alarm value matches the high limit side． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
Rコ	Step 1 EVT3 alarm value －Sets Step 1 EVT3 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT3 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
RコН	Step 1 EVT3 high limit alarm value －Sets Step 1 EVT3 high limit alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT3 allocation］． For the independent alarms（such as High／Low limits independent， High／Low limit range independent and High／Low limits with standby independent），the EVT alarm value matches the low limit side，and EVT high limit alarm value matches the high limit side． －Setting range：Refer to（Table 8．1．2－1）on p． 55.
74 -1 0	Step 1 EVT4 alarm value －Sets Step 1 EVT4 alarm value． Setting the value to 0 or 0.0 disables this alarm（except Process high and Process low alarm）． Not available if No event is selected，or if items other than an Alarm output are selected in［Event output EVT4 allocation］． －Setting range：Refer to（Table 8．1．2－1）on p． 55.

Character	Setting item, Function, Setting range \quad Factory default
$\underset{-1}{84 H}$	Step 1 EVT4 high limit alarm value - Sets Step 1 EVT4 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT4 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
75	Step 1 EVT5 alarm value - Sets Step 1 EVT5 alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation]. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
RSH	Step 1 EVT5 high limit alarm value - Sets Step 1 EVT5 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.
	Step 1 data comprises data from Step 1 SV to Step 1 EVT5 high limit alarm value. Up to Step15 can be set continuously.
$\begin{array}{ll} \square 5 & 0 \\ -15 & 0 \end{array}$	Step 15 EVT5 high limit alarm value - Sets Step 15 EVT5 high limit alarm value. Setting the value to 0 or 0.0 disables this alarm (except Process high and Process low alarm). Not available if No event is selected, or if items other than an Alarm output are selected in [Event output EVT5 allocation]. For the independent alarms (such as High/Low limits independent, High/Low limit range independent and High/Low limits with standby independent), the EVT alarm value matches the low limit side, and EVT high limit alarm value matches the high limit side. - Setting range: Refer to (Table 8.1.2-1) on p. 55.

Step SV from Steps 1 to 15 and values from EVT1 to EVT5 correspond to SV from Set value memory numbers 1 to 15 and values from EVT1 to EVT5.

8.2.3 PID group

PID parameters can be set in this group.
PID group is common to Fixed value control and program control.
To enter the PID group, follow the procedures below.
(1) U_{-}PId Press the SET key twice in PVISV display mode. The unit proceeds to the PID group.
(2) P Press the MODE key once.

If PID zone function "Not used" is selected in [PID zone function],
 the unit will proceed to 'OUT1 proportional band 1'.
If PID zone function "Used" is selected in [PID zone function], the unit will proceed to 'PID zone value 1'.

Character	Setting item, Function, Setting range	Factory default
	- Sets Reference value 1 to change PID zone parameters of the PID zone function. Not available if PID zone function "Not used" is selected in [PID zone function]. One zone comprises data from "PID zone value 1 " to "OUT1 rate-of-change 1". When SV is lower than Reference value 1, control is performed with these PID zone parameters. - Setting range: Scaling low limit value to Scaling high limit value	
	- Sets the proportional band 1 for OUT1. OUT1 becomes ON/OFF control when set to 0 or 0.0 . - Setting range: 0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current input: 0.0 to 1000.0 \%	
	- Sets the proportional band 1 for OUT2. OUT2 becomes ON/OFF control when set to 0.0. Available only when $\mathrm{D} \square$ option is ordered. - Setting range: 0.0 to 10.0 times (Multiplied value of OUT1 proportional band)	
1	- Sets integral time 1 for OUT1. Setting the value to 0 disables this function. Auto-reset can be performed when PD is control action (I=0). - Setting range: 0 to 3600 seconds	

Character	Setting item, Function, Setting range	Factory default
-1 50	Derivative time 1 - Sets derivative time 1 for OUT1. Setting the value to 0 disables this function. - Setting range: 0 to 1800 seconds	
RONw	- Sets ARW 1 (anti-reset windup 1) for OUT1. - Setting range: 0 to 100 \%	
QLEI	Manual reset 1 - Sets the reset value 1 manually. - Setting range: ± 1000.0 DC voltage, current input: The placement of the decimal point follows the selection.	
	- Sets OUT1 rate-of-change 1 (changing value of OUT1 MV for 1 second). Setting the value to 0 disables this function. See "OUT1 rate-of-change" on p.57. - Setting range: 0 to $100 \% /$ second	
	One zone comprises data from "PID zone value 1" to "OUT1 rate-of-change 1", if PID zone function "Used" is selected in [PID zone function]. Up to 5 zones can be set continuously.	
	- Sets OUT1 rate-of-change 5 (changing value of OUT1 MV for 1 second). Setting the value to 0 disables this function. See "OUT1 rate-of-change" on p.57. - Setting range: 0 to $100 \% /$ second	

8．2．4 AT group

AT／Auto－reset Perform／Cancel，AT bias can be set in this group．
AT group is common to Fixed value control and program control．
During ON／OFF control or PI control，the unit cannot proceed to any setting items in this group．
If PID zone function＂Used＂is selected，and if control action of the PID zone number （used for control）is ON／OFF or PI，the unit cannot proceed to any setting items in this group．

To enter the AT group，follow the procedures below．
（1）$U_{-} A \Gamma$ Press the SET key 3 times in PV／SV display mode．
The unit proceeds to the AT group．
（2）$A \Gamma \ldots$ Press the MODE key once．
The unit proceeds to the＇AT／Auto－reset＇selection．

Character	Setting item，Function，Setting range	Factory default
\square	AT／Auto－reset －Selects AT Perform／Cancel（PID control）or Auto－reset Perform／Cancel（P，PD control）． －If PID zone function＂Used＂is selected，values such as P，I，D，ARW of the PID block number（which are used for control）will be changed after AT（auto－tuning）is finished． －If AT is cancelled during the process，P，I，D and ARW values revert to the values before AT was performed． －AT will be forced to stop if it has not been completed within 4 hours． －Auto－reset is cancelled in approximately 4 minutes．It cannot be released while performing this function． FIーシーズーに「：AT／Auto－reset Perform If＂AT／Auto－reset Perform＂is selected，and the MODE key is pressed， the unit reverts to PV／SV display mode．	
	AT bias －Sets bias value for the AT（auto－tuning）． Refer to＂11．AT＂on pages 77， 78. Not available for DC voltage，current inpu －Setting range： 0 to $50{ }^{\circ} \mathrm{C}\left(0\right.$ to $\left.100{ }^{\circ} \mathrm{F}\right)$ With a decimal point： 0.0 to $50.0{ }^{\circ} \mathrm{C}(0.0$	$20^{\circ} \mathrm{C}$ $\left.100.0^{\circ} \mathrm{F}\right)$

9．Operation

9．1 Starting operation

After the unit is mounted to the control panel and wiring is completed，operate the unit following the procedures below．
（1）Turn the power supply to the unit ON．
After the power is turned on，the PV display indicates the input type，and the SV display indicates the input range high limit value（thermocouple，RTD input）or scaling high limit value（DC voltage，current input）for approximately 3 seconds．
See（Table 9．1－1）．
（Table 9．1－1）

Sensor input	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	PV display	SV display	PV display	SV display
K	\cdots	¢ 1717	\cdots	マイツ日
	$\therefore \mathrm{E}$	－400	$\cdots \square$	－，－M
J	\square	－ 180	いロF	－1日ジ
R	\bigcirc	－ 176	FuTF	－3ロロ
S	4 L	－17E日	$4 \mathrm{\square V}$	－\square^{-16}
B	$\square \square$	－180\％	$\square \square F$	习30日
E	$E \square$	－日GO	$E \square F$	－1゙7
T	F－I	－400	FO．F	
N	MU1L	－	$\because \mathrm{NOF}$	ロージミ
PL－II	F1\％	－イヨGに	FLEF	に心ジ
C（W／Re5－26）	$\square \mathrm{L}$	二ヲic	$\square \mathrm{F}$	－49G
Pt100	\cdots	ロG\％	FT．F	
JPt100	ルロ゙「	G60	MF｜F	－\％\％
Pt100	F10	－\％6	FT F	－灾
JPt100	ルF＇下	－5\％	MFIF	－9ジ
Pt100	Fir	－180	Fro．F	E10！
Pt100	F－5 I	－Sicio	F＇G F	ロジロ
4 to 20 mA DC		Scaling high limit value		
0 to 20 mA DC				
0 to 10 mV DC	＂10＂，			
－10 to 10 mV DC	－100Mir			
0 to 50 mV DC	ESini，			
0 to 100 mV DC				
0 to 1 V DC	凧吅			
0 to 5 V DC	日吅：			
1 to 5 V DC	G\％			
0 to 10 V DC	\％ 610			

During this time，all outputs and indicators are in OFF status．
Control will then start，indicating as follows．

－Fixed value control status

The PV display indicates PV（process variable），the SV display indicates SV （desired value），and the MEMO／STEP display indicates the memory number if＇Set value memory＇is selected from Event input allocation．

- When Control output OFF function is working

The PV display indicates [nIFD].
Indication of the PV display depends on the selection in [Indication when output OFF].

- Program control standby status

The PV display indicates the PV (process variable), and the SV display and MEMO/STEP display go off.

- When program control is operating

The PV display indicates PV (process variable), the SV display indicates the Step SV, and the MEMO/STEP display indicates the step number.

(2) Set up the unit.

Refer to "6. Operation flowchart" (pages 20-24) and "7. Setup" (pages 25-51).
Setup (setting the Input type, Event output type, Control action, etc.) should be done in the Engineering group before using this controller, according to the user's conditions. If the users' specification is the same as the factory default value of the instrument, it is not necessary to set up the controller. Proceed to Step (3).
(3) Input each set value.

Refer to "6. Operation flowchart" (pages 20-24) and "8. Settings" (pages 52-67).

(4) Turn the load circuit power ON.

The controller works as follows depending on the control (Fixed value control/Program control).

- Fixed value control

Control action starts so as to keep the control target at the SV (desired value).

- Program control

Perform program control

To perform Program control, press the $\frac{\text { RuN }}{\text { STop }}$ key.
Program control starts ("PV start" is used).
PV start: When the program control starts, the step SV and time are advanced to the PV, and the control starts.
If "Program start temperature" has been set in the Program group, Program control starts from the preset temperature.
While the Wait function is working, the STEP indicator flashes.

Stop program control

To stop Program control, press the $\frac{\mathrm{RUN}}{\mathrm{ETOP}}$ key for 1 second.
Program control stops, and the unit reverts to Program control standby.
Advance function (proceeds to the next step during program operation)
If the \triangle key is pressed for 1 sec during program control, it will interrupt the performing step, and will proceed to the next step. If Wait function is working, the Wait function will be cancelled, and the unit will proceed to the next step.

Control after power restoration

If power failure occurs during the Program control, then is restored, control will stop (standby)/continues/is suspended depending on the selection in [Power restore action].
To cancel the "Suspension (On hold) after restoration", press the $\frac{\text { Rus }}{\text { siop }}$ key.
(e.g.) When setting the SV (desired value) to $100{ }^{\circ} \mathrm{C}$ in the Fixed value control.

Proceed to SV setting mode.
Press the MODE key in PV/SV display mode.
The unit proceeds to the SV setting mode.

Set SV.
Set SV with the \triangle or ∇ key.

Register the SV.

Press the MODE key to register the SV.
The unit reverts to PV/SV display mode.

Control starts.

9.2 Control output OFF function

This is a function to pause the control action or turn the control output of the unused instrument of the plural units OFF even if the power to the instrument is supplied.
This function is available for Fixed value control.
To turn the control output OFF, press the $\frac{\text { RuN }}{\text { stop }}$ key for approximately 1 second in PV/SV display mode.
$[\square F]$ is indicated on the PV display while the function is working.
However, indication on the PV display depends on the selection in [Indication when output OFF].
Once the control output OFF function is enabled, the function cannot be released even if the power to the instrument is turned OFF and ON again.
To cancel the function, press the $\frac{\text { RUN }}{\text { stop }}$ key again for approx. 1 second.

9.3 Switching Auto/Manual control

By pressing the $\frac{A^{\prime \prime M}}{\text { बल०० }}$ key in PV/SV display mode, Auto/Manual control can be switched.
If control action is switched from automatic to manual and vice versa, balancelessbumpless function works to prevent a sudden change of MV.
When automatic control is switched to manual control, the MEMO/STEP display indicates [$\left.{ }^{\prime} 1 / 1\right]$.
The MV (manipulated variable) can be increased or decreased by pressing the \triangle or ∇ key to perform the control.
 control).
Whenever the power to the controller is turned on, automatic control starts.

9.4 Indicating MV (manipulated variable) and remaining step time (program control) To indicate MV (manipulated variable), press the MODE key for approximately 3 seconds in PV/SV display mode. The SV/MV/TIME display indicates output MV and the MEMO/ STEP display indicates [$\left[\frac{1}{\prime \prime}\right]$].
SV and TIME of the SV/MV/TIME indicator are unlit, and MV of the SV/MV/TIME indicator is lit.
If the MODE key is pressed again during fixed value control, the unit will revert to PV/SV display mode.
If the MODE key is pressed during program control, remaining step time is indicated on the SV/MV/TIME display.
SV and MV of the SV/MV/TIME indicator are unlit, and TIME of the SV/MV/TIME indicator is lit.
By pressing the MODE key again, the unit reverts to PV/SV display mode.

During Fixed value control:

PV/SV display mode Output MV
(Automatic control) indication

9.5 AT/Auto-reset Perform, AT Cancel

In order to set each value of P, I, D and ARW automatically, the AT process should be made to fluctuate to obtain an optimal value. (See pages 77, 78.)
AT/Auto-reset Perform and AT Cancel can be set in [AT/Auto-reset] in the AT group. Auto-reset can be performed when the unit is in P or PD control action. (See p.77.) Auto-reset ends 4 minutes after starting. It cannot be released while performing this function.

How to perform AT/Auto-reset

(1) Press the SET key 3 times in PV/SV display mode.

The unit proceeds to the AT group.
(2) Press the MODE key. The unit proceeds to AT/Auto-reset selection.
 press the MODE key.
The unit returns to PV/SV display mode, and AT/Auto-reset will initiate.
While performing AT/Auto-reset, the AT indicator is flashing.
AT will be forced to stop if it has not been completed within 4 hours.
During AT, if Direct/Reverse action is switched in the Event input ("003" Direct/Reverse action from Event input allocation), the AT stops.
Auto-reset is cancelled in approximately 4 minutes. It cannot be released while performing this function.

How to cancel AT

(1) Press the SET key 3 times in PV/SV display mode.

The unit proceeds to the AT group.
(2) Press the MODE key.

The unit proceeds to AT/Auto-reset mode.
(3) Select AT/Auto-reset "Cancel [-----]" with the ∇ key, and press the mODE key for 3 seconds. AT will stop, and the unit will revert to PV/SV display mode. If AT is cancelled during this process, each value of P, I, D and ARW reverts to the values before the AT was performed.

AT Perform/Cancel (PID control):

(1)

(2)

(4)

Proceed to the AT group.
Press the SET key 3 times in PV/SV display mode.
The unit proceeds to the AT group.

Proceed to AT/Auto-reset mode.

Press the MODE key.
The unit proceeds to AT/Auto-reset mode.

Select AT Perform/Cancel.

Select "Fir (AT Perform)" with the \triangle, or select"---- (AT Cancel)" with the ∇.
----- : AT Cancel
AIT: AT Perform

Confirm AT Perform/Cancel.

If "AT Perform" is selected, press the MODE key.
If "AT Cancel" is selected, press the MODE key for 3 sec .
The unit reverts to PV/SV display mode.

AT Perform/Cancel

While AT is performing, the AT indicator flashes, and it goes off if $A T$ is cancelled.
9.6 Using Event output as a High/Low limits independent alarm

To use the Event output as a High/Low limits independent alarm, set as follows. (e.g.)

SV: $100{ }^{\circ} \mathrm{C}$
EVT1 (low limit) alarm value: $10{ }^{\circ} \mathrm{C}$
EVT1 high limit alarm value: $20{ }^{\circ} \mathrm{C}$
(1) Select [Engineering group] - [Event output group] - [Event output EVT1 allocation] - [Alarm output; High/Low limits independent] in order.

(2)

(3)

(4)
(4) E-EV口

(6)

MODE
(7)

Proceed to the Engineering group.

Press the SET key 4 times in PV/SV display mode.
The unit proceeds to the Engineering group.

Proceed to the Input group.

Press the MODE key.
The unit proceeds to the Input group.

Proceed to the Event output group.
Press the SET key several times until Event output group characters appear.

Proceed to the Event output EVT1 allocation.

Press the MODE key.
The unit proceeds to Event output EVT1 allocation.

Select Event output EVT1 allocation.

Select [004: Alarm output; High/Low limits independent] with the Δ or ∇ key.

Confirm the Event output EVT1 allocation.

Press the MODE key.
The unit proceeds to Event output EVT1 alarm hysteresis.

Set Event output EVT1 alarm hysteresis.

Use the Δ or ∇ key for settings, and press the MODE key.
The unit proceeds to Event output EVT1 alarm action delay timer.
(8)
(9)

(10)

Set Event output EVT1 alarm action delay timer.
Use the Δ or ∇ for settings, and press the MODE key. The unit proceeds to Event output EVT1 alarm Energized/De-energized.

Select Event output EVT1 alarm Energized/De-energized.

Use the Δ or ∇ for settings, and press the MODE key for 3 seconds.
The unit reverts to PV/SV display mode.
PV/SV display mode
(2) Set EVT1 (low limit) alarm value and EVT1 high limit alarm value.
(1)

(3)
(2)

(4)

(5)

(6)

Proceed to Event setting mode.
Press the MODE key while pressing the \triangle key in PV/SV display mode.
The unit proceeds to Event setting mode.
Set the EVT1 (low limit) alarm value.
Set the EVT1 (low limit) alarm value with the Δ or ∇ key.

Register the EVT1 (low limit) alarm value.

Press the MODE key. The EVT1 (low limit) alarm value is registered, and the unit proceeds to EVT1 high limit alarm value.

Set EVT1 high limit alarm value.

Set the EVT1 high limit alarm value with the Δ or ∇ key.

Register the EVT1 high limit alarm value.

Press the MODE key.
The EVT1 high limit alarm value is registered, and the unit reverts to PV/SV display mode.

PV/SV display mode

9.7 Set value memory function

If Set value memory function is selected in [Event input EVI1 to EVI4 allocation], memory file numbers can be selected by external operation. Up to 15 files with 13 pieces of data can be memorized. Control can be performed by selecting the desired file number.
In one file, 13 pieces of data are included: SV (desired value), Step time, Wait value, EVT1 alarm value, EVT1 high limit alarm value, EVT2 alarm value, EVT2 high limit alarm value, EVT3 alarm value, EVT3 high limit alarm value, EVT4 alarm value, EVT4 high limit alarm value, EVT5 alarm value, EVT5 high limit alarm value.

If Set value memory function is selected for all from EVI1 to EVI4 in [Event input EVI1 to EVI4 allocation], the memory number can be set by connecting terminals 11 through 15 as follows.
A maximum of 50 units of controllers can be connected in parallel.
Set value memory numbers by connecting terminals: [O: ON (Closed), X: OFF (Open)]

Connecting terminals	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
11-15 [DI1(EVI1)-COM]	X	O	X	0	X	O	X	0	X	O	X	0	X	0		O
12-15 [DI2(EVI2)-COM]	X	X	O	O	X	X	O	0	X	X	0	0	X	X	O	0
13-15 [DI3(EVI3)-COM]	X	X	X	X	O	O	0	0	X	X	X	X	0	0	O	0
14-15 [DI4(EVI4)-COM]	X	X	X	X	X	X	X	X	0	0	O	O	0	0	0	0

(*): Works as Set value memory number 15.
If Set value memory function is selected for EVI1 and EVI2 in [Event input EVI1 to EVI4 allocation]: Set value memory number can be selected using terminals 11,12 and 15 as shown below.
Set value memory numbers by connecting terminals: [O: ON (Closed), X: OFF (Open)]

Connecting terminals	1	2	3	4
$11-15[\mathrm{DI} 1(\mathrm{EVI})-\mathrm{COM}]$	X	O	X	O
$12-15[\mathrm{DI} 2(\mathrm{EVI} 2)-\mathrm{COM}]$	X	X	O	O

During setting mode or during AT performing, memory numbers cannot be changed by connecting terminals.

[Operation procedures]

Simplified setting

(1) Select a Set value memory number by connecting terminals in PV/SV display mode.
(2) Set the following values.

- SV (in SV setting mode)
- EVT1 alarm value, EVT1 high limit alarm value, EVT2 alarm value, EVT2 high limit alarm value, EVT3 alarm value, EVT3 high limit alarm value, EVT4 alarm value, EVT4 high limit alarm value, EVT5 alarm value, EVT5 high limit alarm value (in Event setting mode)

Group selection (Fixed value control)

(1) Proceed to the desired setting item of Set value memory number to be set in the SV, Event group.
(2) Set the following values.

SV, EVT1 alarm value, EVT1 high limit alarm value, EVT2 alarm value, EVT2 high limit alarm value, EVT3 alarm value, EVT3 high limit alarm value, EVT4 alarm value, EVT4 high limit alarm value, EVT5 alarm value, EVT5 high limit alarm value

[Registration complete]

- Each set value is registered in the file number displayed in the MEMO/STEP display.
- When any number is retrieved by connecting terminals, the selected number will be indicated, and the control is performed using the data (set values) of the indicated file number.
- To change set values, repeat the "Operation procedures" above.

10. Auto-reset

Auto-reset is performed to correct the offset at the point at which PV indication is stabilized within the proportional band during the PD control. Since the corrected value is internally memorized, it is not necessary to perform the auto-reset again as long as the process is the same. However, when OUT1 proportional band is set to 0 or 0.0 , the corrected value is cleared.

(Fig. 10-1)

11. AT (Auto-tuning)

In order to set each value of P, I, D and ARW automatically, the AT process should be made to fluctuate to obtain an optimal value. One of 3 types of fluctuation below is automatically selected.
For DC voltage, current input, the AT process will fluctuate around the SV for conditions of [1], [2] and [3]. (p.78)

Notice

- Perform AT during the trial run.
- If PID zone function is set to "Used", perform AT in each PID zone. In (Fig. 11-1), AT is performing at PID zone values 1 and 2.

(Fig. 11-1)
- If AT is cancelled during this process, each value of P, I, D and $A R W$ reverts to the values before the AT was performed.
- AT will be forced to stop if it has not been completed within 4 hours.
- During AT, if Direct/Reverse action is switched in the Event input ("003" Direct/Reverse action from Event input allocation), the AT stops.
- During AT, none of the setting items can be set.
- If power failure occurs during AT, the AT will stop.
- Sometimes the AT process will not fluctuate if AT is performed at or near room temperature. Therefore AT might not finish normally.
[1] In the case of a large difference between the SV and PV (process variable) as the temperature is rising
When AT bias is set to $20{ }^{\circ} \mathrm{C}$, the AT process will fluctuate at the temperature $20{ }^{\circ} \mathrm{C}$ lower than the SV.

(1) Calculating PID constant
(2) PID constant calculated
(3) Controlled by the PID constant set by AT.
(4) AT bias value
(Fig. 11-2)

[2] When the control is stable

The AT process will fluctuate around the SV.

(1) Calculating PID constant
(2) PID constant calculated
(3) Controlled by the PID constant set by AT.
(Fig. 11-3)

[3] In the case of a large difference between the SV and PV (process variable)

 as the temperature is fallingWhen AT bias is set to $20{ }^{\circ} \mathrm{C}$, the AT process will fluctuate at the temperature $20{ }^{\circ} \mathrm{C}$ higher than the SV.

(1) Calculating PID constant
(2) PID constant calculated
(3) Controlled by the PID constant set by AT.
(4) AT bias value
(Fig. 11-4)

12. Action explanation

12.1 OUT1 action

	Heating (reverse) action			Cooling (direct) action		
Control action						
R/口	$\begin{aligned} & \text { H(4) } \\ & \text { C(5) } \\ & \text { L(6) } \end{aligned}$	$\begin{aligned} & \text { H(4) } \\ & \text { C(5) } \\ & \text { L(6)- } \end{aligned}$ Cycle action is according to d		$\begin{aligned} & \mathrm{H}(4) \\ & \mathrm{c}(5) \\ & \mathrm{g} \text { (6)-9 } \end{aligned}$	$\begin{aligned} & \text { H(4) } \begin{array}{l} \text { a } \\ \text { C(5) } \\ \text { L(6) } \end{array}=1 \end{aligned}$ Cycle action is according to	$\begin{gathered} \mathrm{H}(4)-1 \\ \mathrm{C}(5) \\ \text { L(6)_ } \\ \text { efformed } \\ \text { viation } \end{gathered}$
S/ \square	$+\sqrt[(5)]{12 v D C}$ (6)	$\begin{aligned} & +(5)-1 \\ & 12 / 0 \mathrm{VDC} \\ & \text {-(6)- } \end{aligned}$ Cycle action according to	$\begin{aligned} & +(5)- \\ & \text { ov } \mathrm{CDC} \\ & \text { - (6) } \\ & \text { performed } \\ & \text { eeviation } \end{aligned}$	$\begin{aligned} & +(5)- \\ & \text { (6) }-1 \end{aligned}$	+ (5) 0/12 V DC (6) ycle action is p according to de	$\begin{aligned} & +(5)-12 \mathrm{VDC} \\ & \text {-(6)- } \\ & \text { ifformed } \\ & \text { iation } \end{aligned}$
A/D	$\begin{aligned} & +(5) \\ & 20 \mathrm{mADC} \\ & -6-\mathrm{-} \end{aligned}$	$\begin{aligned} & +(5) \\ & 20 \text { to } 4 \mathrm{~mA} \\ & -(6)-1 \\ & \text { Changes contir } \\ & \text { Cccording to de } \end{aligned}$	$\begin{aligned} & +(5) \\ & \text { + (6) mA DC } \\ & \text { - iuously } \\ & \text { iation } \end{aligned}$	$\begin{aligned} & +(5) \\ & +(6)-1 \end{aligned}$	$\begin{gathered} +(5) \\ 4 \text { to } 20 \mathrm{~mA} \\ -(6) \\ \text { Changes contin } \\ \text { according to dev } \end{gathered}$	$\begin{aligned} & +(5) \text { _) } \\ & \text { 20 mA DC } \\ & \text {-(6)-_ } \\ & \text { uously } \\ & \text { iation } \end{aligned}$
Indicator (OUT1)	Lit		Unlit	Unlit		Lit

—: ON (lit) or OFF (unlit)

12.2 OUT1 ON/OFF control action

	Heating (reverse) action		Cooling(direct) action	
Control action				
R/D	$\begin{aligned} & \mathrm{H}(4) \mathrm{O} \\ & \mathrm{C}(5) \\ & \text { (5) } \end{aligned}$ L(6)	$\begin{aligned} & \mathrm{H}(4) \mathrm{g} \\ & \mathrm{C}(5) \\ & \mathrm{L}(6) \\ & \mathrm{L} \end{aligned}$	$\begin{aligned} & \text { H(4) } \\ & \text { C(5) } \\ & \text { L(6) } \end{aligned}$	$\begin{aligned} & \text { H(4) } \\ & \text { C(5) } \\ & \text { L(6) } \end{aligned}$
S/L	$\begin{aligned} & +5) \\ & -(6) \end{aligned}$	$\begin{aligned} & + \text { (5) } \\ & \text {-(6)- } \end{aligned}$	$\begin{aligned} & +(5) \\ & \text {-(6)- } \end{aligned}$	$\begin{aligned} & +5-(12 \mathrm{VDC} \\ & -(6)- \end{aligned}$
AID	$\begin{aligned} & +(5)-20 \mathrm{mADC} \\ & - \text { (6)- } \end{aligned}$	$\begin{aligned} & +(5)-4 \mathrm{mADC} \\ & -(6)- \end{aligned}$	$\begin{aligned} & +5(5) \\ & -6)^{4 \mathrm{mADC}} \end{aligned}$	$\begin{aligned} & +(5)-20 \mathrm{mADC} \\ & -6 \cdot-\mathrm{Cl} \end{aligned}$
Indicator (OUT1)	Lit	Unlit	Unlit	Lit

\square : ON (lit) or OFF (unlit)
12.3 Alarm action

	High limit alarm	Low limit alarm
Alarm action		
Alarm output	+side - side	+side - side
	High/Low limits alarm	High/Low limits independent alarm
Alarm action		
Alarm output		
	High/ Low limit range alarm	High/ Low limit range independent
Alarm action		
Alarm output	\square	\square
	Process high alarm	Process low alarm
Alarm action		
Alarm output	\square	\square

	High limit alarm with standby	Low limit alarm with standby
Alarm action		
Alarm output	$\begin{aligned} & \text { + side } \\ & \text { - side } \end{aligned}$	
	High/Low limits with standby	High/Low limits with standby independent
Alarm action		EVT1 hysteresis
Alarm output	\square	

\square : EVT1 output terminals 9 and 10 are closed (ON).
2: EVT1 output terminals 9 and 10 are closed (ON) or opened (OFF).
\square : EVT1 output terminals 9 and 10 are opened (OFF).
I: Standby functions.

- EVT1 value means EVT1 alarm value, and EVT1 hysteresis means EVT1 alarm hysteresis.
- EVT1 indicator lights when their output terminals 9 and 10 are closed (ON), and goes off when their output terminals 9 and 10 are opened (OFF).
For EVT2 to EVT5, read "EVT2 to EVT5" for "EVT1".
EVT2 output (terminals 7 and 8) (For A3 option, use terminals 8 and 10.)
EVT3 output (terminals 7 and 10)
EVT4 output (terminals 29 and 30)
EVT5 output (terminals 28 and 30)
- For the alarm type (High limit alarm, High/Low limits alarm, High/Low limits independent, Process high alarm), the alarm is activated when the indication is overscale, and the standby function is released for the alarms with standby.
For the alarm type (Low limit alarm, High/Low limits alarm, High/Low limits independent, Process low alarm), the alarm is activated when the indication is underscale, and the standby function is released for the alarms with standby.
When the alarm action De-energized is selected, the output ON/OFF status acts conversely to the alarm action described above. (The Event indicator is the same as the action Energized.)

	Energized	De-energized
Event indicator	Lights	Lights
Event output	ON	OFF

12.4 Heater burnout alarm action

- EVT1 indicator lights when their output terminals 9 and 10 are closed (ON), and goes off when their output terminals 9 and 10 are opened (OFF).
The following shows EVT2 to EVT5 terminals.
EVT2 output (terminals 7 and 8) (For A3 option, use terminals 8 and 10.)
EVT3 output (terminals 7 and 10)
EVT4 output (terminals 29 and 30)
EVT5 output (terminals 28 and 30)

12.5 OUT2 (Heating/Cooling control) action

Control action				Cooling action
R/ \square		e action is perform cording to deviatio		
DR				
S/ \square	$\begin{aligned} & +(5)-12 \vee \mathrm{DC} \\ & -6) \end{aligned}$	$+5$ $12 / 0 \mathrm{~V}$ DC -6 cle action is perfo ccording to deviatio	$+5$ $0 \mathrm{~V} D \mathrm{C}$ (6) ed .	
DS				
A/ \square	$\begin{aligned} & +(5)-20 \mathrm{~mA} \mathrm{DC} \\ & -6) \end{aligned}$	$\begin{aligned} & \text { +(5) } \\ & 20 \text { to } 4 \mathrm{mADC} \\ & \text {-(6) } \end{aligned}$ anges continuous cording to deviatio	$\begin{aligned} & + \text { (5) } 4 \mathrm{mADC} \\ & \text {-(6) } \end{aligned}$	
DA		$\begin{aligned} & +7)-4 \mathrm{mADC} \\ & -8 \end{aligned}$	$\begin{aligned} & \text { +(7) } \\ & 4 \text { to } 20 \mathrm{~mA} \mathrm{DC} \\ & \text {-(8) } \end{aligned}$ anges continuously ording to deviation	$\begin{aligned} & +(7)-20 \mathrm{mADC} \\ & -8) \end{aligned}$
Indicator (OUT1)	Lit			Unlit
Indicator (OUT2)	Unlit			Lit

\square : ON (lit) or OFF (unlit)
__ : Represents Heating action.

- - - - : Represents Cooling action.

12.6 OUT2 (Heating/Cooling control) action (when setting dead band)

—: ON (lit) or OFF (unlit)
_- : Represents Heating action.

- - - - : Represents Cooling action.

12.7 OUT2 (Heating/Cooling control) action (when setting overlap band)

—: ON (lit) or OFF (unlit)
_- : Represents Heating action.

- - - - : Represents Cooling action.

13. Specifications

13.1 Standard specifications

Rating

Input	Thermocouple	K, J, R, S, B, E, T, N, PL-II, C(W/Re5-26) External resistance, 100Ω or less (However, B input: External resistance, 40Ω or less)
	RTD	Pt100, JPt100 3-wire system Allowable input lead wire resistance: 10Ω or less per wire
	Direct current	0 to $20 \mathrm{mADC}, 4$ to 20 mADC Input impedance: 50Ω Allowable input current: 50 mA or less
	DC voltage	0 to 10 mV DC, -10 to $10 \mathrm{mV} \mathrm{DC}$,0 to 50 mV DC, 0 to $100 \mathrm{mV} \mathrm{DC}$,0 to 1 V DC Input impedance: 1 M or more Allowable input voltage: 5 V DC or less Allowable signal source resistance: 0 to $10 \mathrm{mVDC}: 20 \Omega$ or less -10 to 10 mV DC: 40Ω or less 0 to 50 mV DC: 200Ω or less 0 to 100 mV DC: 200Ω or less 0 to $1 \mathrm{VDC}: \quad 2 \mathrm{k} \Omega$ or less
		0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC Input impedance: $100 \mathrm{k} \Omega$ or more Allowable input voltage: 15 V DC or less Allowable signal source resistance: 100Ω or less
Supply voltage	100 to 240 V AC $50 / 60 \mathrm{~Hz}$, or 24 V AC/DC $50 / 60 \mathrm{~Hz}$ Allowable voltage fluctuation: 100 to $240 \mathrm{~V} \mathrm{AC}: 85$ to 264 V AC 24 V AC/DC: 20 to 28 V AC/DC	

General structure

External dimensions	ACD-13A: $96 \times 96 \times 100 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$ ACR-13A: $48 \times 96 \times 100 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Mounting	Flush
Material	Case: Flame-resistant resin
Color	Case: Black
Drip-proof/ Dust-proof	IP66 (for front panel only)
Display	PV display11-segment LCD 5-digit, Backlight Red/Green/Orange Character size: ACD-13A: $24.0 \times 11.0 \mathrm{~mm} \mathrm{(H} \mathrm{\times W)}$ ACR-13A: $14.0 \times 5.4 \mathrm{~mm}(\mathrm{H} \mathrm{x} \mathrm{W})$

	SV/MV/TIME display	11-segment LCD 5-digit, Backlight Green Character size: $\begin{aligned} & \text { ACD-13A: } 14.0 \times 7.0 \mathrm{~mm}(\mathrm{H} \times \mathrm{W}) \\ & \text { ACR-13A: } 10.0 \times 4.6 \mathrm{~mm}(\mathrm{H} \times \mathrm{W}) \end{aligned}$
	MV/DV bar graph	22-segment LCD bar graph, Backlight Green
	MEMO/STEP display	11-segment LCD 2-digit, Backlight Orange Character size: ACD-13A: $10.0 \times 5.0 \mathrm{~mm}(\mathrm{H} \times \mathrm{W})$ ACR-13A: $10.0 \times 4.6 \mathrm{~mm}(\mathrm{H} \mathrm{x} \mathrm{W})$
	Action indicators	Backlight Orange

Setting structure

Setting method \quad Digital setting using membrane sheet key

Indication performance

Accuracy	Thermocouple	Within ± 0.2 \% of each input span ± 1 digit However R, S input, 0 to $200{ }^{\circ} \mathrm{C}\left(32\right.$ to $\left.392{ }^{\circ} \mathrm{F}\right)$: Within $\pm 6{ }^{\circ} \mathrm{C}\left(12{ }^{\circ} \mathrm{F}\right)$ B input, 0 to $300{ }^{\circ} \mathrm{C}\left(0\right.$ to $\left.572{ }^{\circ} \mathrm{F}\right)$: Accuracy is not guaranteed. $\mathrm{K}, \mathrm{J}, \mathrm{E}, \mathrm{T}, \mathrm{N}$ input, less than $0{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right)$: Within $\pm 0.4 \%$ of input span ± 1 digit
	RTD	Within ± 0.1 \% of each input span ± 1 digit
	Direct current	Within ± 0.2 \% of each input span ± 1 digit
	DC voltage	Within ± 0.2 \% of each input span ± 1 digit
External setting input accuracy	Within ± 0.2 \% of External setting input span	
Cold junction temperature compensation accuracy	Within $\pm 1{ }^{\circ} \mathrm{C}$ at 0 to $50{ }^{\circ} \mathrm{C}$	
Input sampling period	125 ms (250 ms when EA \square or EV \square option is ordered)	
Time accuracy	Within ± 1.0 \% of the setting time	

Control performance

Setting accuracy	Based on the Indication accuracy and Cold junction temperature compensation accuracy
Control action	PID control (with AT function) PI control: When derivative time is set to 0 0 set to 0 (with Auto/Manual reset function): When integral time is P control (with Auto/Manual reset function): When derivative and integral time are set to 0.

Control action	OUT1 proportional band	0 to Input span ${ }^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$) DC voltage, current input: 0.0 to 1000.0 \% (ON/OFF control when set to 0 or 0.0) (Factory default: $10{ }^{\circ} \mathrm{C}$)
	Integral time	0 to 3600 sec (OFF when set to 0) (Factory default: 200 sec)
	Derivative time	0 to 1800 sec (OFF when set to 0) (Factory default: 50 sec)
	OUT1 proportional cycle	1 to 120 sec (Factory default: Relay contact: 30 sec , Non-contact voltage: 3 sec , Current output: Not available)
	ARW	0 to 100% (Factory default: 50 \%)
	OUT1 ON/OFF hysteresis	0.1 to $1000.0{ }^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$) (Factory default: $1.0^{\circ} \mathrm{C}$) DC voltage, current input: 1 to 10000 (The placement of the decimal point follows the selection.)
	OUT1 high limit	0 to 100 \% (Current: -5 to 105%) (Factory default: 100%)
	$\begin{array}{\|l} \hline \begin{array}{l} \text { OUT1 low } \\ \text { limit } \end{array} \\ \hline \end{array}$	0 to 100 \% (Current: -5 to 105 \%) (Factory default: 0 \%)
Control output (OUT1)	Relay contact 1 a 1 b Control capacity: 3 A 250 VAC (resistive load), 1 A 250 VAC (inductive load $\cos \phi=0.4$) Electrical life: 100,000 cycles	
	Non-contact voltage (SSR drive)	$\begin{aligned} & 12 \mathrm{~V} \mathrm{DC} \pm 15 \% \\ & \text { Maximum } 40 \mathrm{~mA} \text { (short circuit protected) } \end{aligned}$
	Direct current	4 to 20 mA DC (Resolution: 12000) Load resistance: Maximum 600Ω

Standard functions

EVT1 output	Output is turned ON or OFF depending on the conditions selected from Event output allocation. Output: Relay contact 1a Control capacity: 3 A 250 V AC (resistive load) 1 A 250 V AC (inductive load $\cos \phi=0.4$) Electrical life: 100,000 cycles
EVT2 output	Output is turned ON or OFF depending on the conditions selected from Event output allocation. If $D \square$ or P option is ordered, EVT2 output will be disabled. Output: Relay contact 1a Control capacity: 3 A 250 V AC (resistive load) 1 A 250 V AC (inductive load $\cos \phi=0.4$) Electrical life: 100,000 cycles

Alarm action	When Alarm action (Energized) is selected from Event output allocation, the alarm action point is set by the \pm deviation from the SV (except Process alarm). When the input goes outside the range, the output turns ON or OFF (in the case of High/Low limit range alarm). When the alarm action is set as De-energized, the output acts conversely. Types: High limit alarm, Low limit alarm, High/Low limits alarm, High/Low limits independent, High/Low limit range, High/Low limit range independent, Process high alarm, Process low alarm, High limit alarm with standby, Low limit alarm with standby, High/Low limits with standby, High/Low limits with standby independent One type can be selected from 24 types (with status Energized/ De-energized) and No event. (Factory default: No event) Refer to Section '12.3 Alarm action' on pages 81, 82.	
	Set value	Factory default: 0
	Setting accuracy	Based on the Indication accuracy and Cold junction temperature compensation accuracy.
	Action	ON/OFF action Hysteresis: Thermocouple, RTD input: 0.1 to $1000.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ (Factory default: $1.0{ }^{\circ} \mathrm{C}$) DC voltage, current input: 1 to 10000 (The placement of the decimal point follows the selection.)
	Output	EVT output for which alarm is selected from Event output allocation
Loop break alarm	Detects the breaking status on the loop such as heater burnout, sensor burnout or actuator trouble.	
	Setting range	Loop break alarm time: 0 to 200 minutes Loop break alarm span: 0 to $150{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, $0.0 \text { to } 150.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right),$ DC voltage, current input: 0 to 1500 (The placement of the decimal point follows the selection.)
	Output	EVT output for which Loop break alarm is selected from Event output allocation.

Attached functions

Sensor correction	Corrects sensor input value.
Set value lock	Lock 1, Lock 2, Lock 3, Lock 4
Auto/Manual control switching	Auto/Manual control can be switched using the $\frac{\mathrm{A}^{\mathrm{A} / \mathrm{MODE}}}{}$ key in PV/SV display mode.
Program control function	Number of steps: 15 Program control starts or stops with the $\frac{\text { RUN }}{\text { stop }} k$ key. If Pattern end output is selected from Event output allocation (pages 35-37), the Event output to which Pattern end output is allocated is turned ON when program is finished. If the Δ key is pressed for 1 sec while program is operational, the Advance function initiates, interrupting the performing step, and proceeds to the next step.
Action after power restoration	Selects program status when power failure occurs during program control RUN and is restored.

SV ramp function	When the SV (desired value) is adjusted, it approaches the new SV by the preset rate-of-change (${ }^{\circ} \mathrm{C} / \mathrm{min},{ }^{\circ} \mathrm{F} / \mathrm{min}$). When the power is turned on, the control starts from the PV (process variable) and approaches the SV by the rate-of-change.			
Power failure countermeasure	The setting data is backed up in the non-volatile IC memory.			
Self-diagnosis	The CPU is monitored by a watchdog timer, and if an abnormal status occurs, the controller is switched to warm-up status, turning all outputs OFF.			
Automatic cold junction temperature compensation (only thermocouple input type)	This detects the temperature at the connecting terminal between the thermocouple and the instrument, and always maintains it at the same status as if the reference junction location temperature was at $0{ }^{\circ} \mathrm{C}$ ($32{ }^{\circ} \mathrm{F}$).			
Burnout	When thermocouple or RTD input is burnt out, OUT1 and OUT2 are turned OFF (for current output type, OUT1 low limit value), and the PV display flashes " However, for the manual control, the preset MV (manipulated variable) is outputted. When the DC voltage or current input is disconnected, the PV display flashes " " for 4 to $20 \mathrm{mADC}, 1$ to 5 V DC inputs. For 0 to 10 mV DC, -10 to 10 mV DC, 0 to 50 mV DC, 0 to 100 mV DC and 0 to 1 V DC inputs, the PV display flashes " For 0 to $20 \mathrm{mADC}, 0$ to 5 V DC and 0 to 10 V DC inputs, the PV display indicates the value corresponding with 0 mA or 0 V input.			
Input error indication				
Contents, Indication	Output status			
	OUT1		OUT2	
	Direct(Cooling)	Reverse(Heating)	Direct(Cooling)	Reverse(Heating)
Overscale Measured value has exceeded Indication range high limit value. " flashes.	OFF (4 mA) or OUT1 low limit value	OFF (4 mA) or OUT1 low limit value	OFF or OUT2 low limit value	OFF or OUT2 low limit value
Underscale Measured value has dropped below Indication range low limit value. \qquad	OFF (4 mA) or OUT1 low limit value	OFF (4 mA) or OUT1 low limit value	OFF or OUT2 low limit value	OFF or OUT2 low limit value
For manual control, the preset MV (manipulated variable) is outputted.				
Indication range, Control range	Thermocouple input	[Input range low limit value $-50{ }^{\circ} \mathrm{C}\left(100{ }^{\circ} \mathrm{F}\right)$] to [Input range high limit value $+50{ }^{\circ} \mathrm{C}\left(100{ }^{\circ} \mathrm{F}\right)$]		
	RTD input	[Input range low limit value -Input span x 1%] to [Input range high limit value $+50{ }^{\circ} \mathrm{C}\left(100{ }^{\circ} \mathrm{F}\right)$]		
	DC voltage, current input	[Scaling low limit value -Scaling span $\times 1 \%$] to [Scaling high limit value + Scaling span $\times 10 \%$]		
Warm-up indication	After the power supply to the instrument is turned on, the PV display indicates the sensor input type, and SV display indicates input range high limit value (for thermocouple, RTD) or Scaling high limit value (for DC voltage, current input) for approximately 3 seconds.			

Console communication	By connecting the USB communication cable (CMB-001) to the Console connector of the instrument, the following operations can be conducted from an external computer using the Console software SWS-AC001M. Console communication and Serial communication (C, C5 option) cannot be used together. (1) Reading and setting of SV, PID and various set values (2) Reading of PV and action status (3) Function change Communication interface: C-MOS level
PV color selection	PV display color can be selected. For more details, see p.50. (imer function (linked to the Event input)
If Timer output which is linked to Event input is selected from Event output allocation, and if Timer Start/Stop is selected from Event input allocation, this function activates. If Event input turns ON, timer counting starts, and Event output turns	
ON or OFF after delay time has passed.	
If the timer function is allocated to the Event input which is linked to	
control, control turns ON while Event output is ON, and turns OFF if	
Event output is OFF.	

Insulation, Dielectric strength

Insulation resistance	$10 \mathrm{M} \Omega$ or more, at 500 V DC
Dielectric strength	Between power terminal and ground (GND): 1.5 kV AC for 1 minute Between input terminal and ground (GND): 1.5 kV AC for 1 minute Between input terminal and power terminal: 1.5 kV AC for 1 minute

Other

Power consumption	ACD-13A: Approx. 16 VA ACR-13A: Approx. 15 VA				
Ambient temperature	0 to 50 ${ }^{\circ} \mathrm{C}$ (32 to 122 ${ }^{\circ} \mathrm{F}$)	$	$	Ambient humidity	ACD-13A: Approx. 460 g ACR-13A: Approx. 330 g
:---	:---				
Weight	For the ACD-13A and ACR-13A: Mounting brackets: 1 set, Instruction manual: 1 copy Gasket (Front mounted to the unit): 1 piece For the ACR-13A only: Harness EVT5:1 piece [When Event output (A5 option) is ordered] Harness W: 1 piece [When Heater burnout alarm (W option) is ordered] Harness W: 2 pieces [When Heater burnout alarm(W3 option) is ordered] Harness E: 1 piece [When External setting input (EA \square is, EV option) is ordered]				
Accessories included Harness VT: 1 piece [When Transmission output (TA1, TV1 option) is ordered]					
Accessories sold separately	Terminal cover Heater burnout alarm 20 A: CT (CTL-6S) Heater burnout alarm 100 A: CT (CTL-12-S36-10L1U) USB communication cable (CMB-001)				

13.2 Optional specifications

Event input (Option code: El)
An Event input comprises events from EVI1 to EVI4.
Events selected from Event input allocation will be performed depending on the Input ON (Closed) or OFF (Open) status. See (Fig 7.3.3-1) on p.34.
If Set value memory number function is selected:
$2^{0}, 2^{1}, 2^{2}$ and 2^{3} will be allocated to Event input EVI1 to EVI4 respectively, and the Set
value memory number (SV1 to SV15) will be determined by each value of EVI1 to EVI4.
The selected Set value memory number, the added value of $2^{n}+1$, is indicated on the MEMO/STEP display. See "9.7 Set value memory function" on p.76.

Circuit current when Closed	Approx. 16 mA

Event output (Option code: A3)

EVT1 to EVT3 are available using a common terminal.
Output will be turned ON or OFF depending on the conditions selected from Event output allocation.

Output	Relay contact, 1a Control capacity: 3 A 250 V AC (Resistive load) 1 A 250 V AC (Inductive load, $\cos \phi=0.4)$
	Electric life: 100,000 cycles

Event output (Option code: A5)

EVT4 and EVT5 are available.
Output will be turned ON or OFF depending on the conditions selected from Event output allocation.

Output	Relay contact, 1a Control capacity: 3 A 250 V AC (Resistive load) 1 A 250 V AC (Inductive load, $\cos \phi=0.4)$
	Electric life: 100,000 cycles

Heater burnout alarm (including sensor burnout alarm) [Option code: W, W3]
Output will be turned ON or OFF depending on the conditions selected from Event output allocation.
This alarm is also activated when indication is overscale and underscale.
This option cannot be applied to current output type.

Rated current	One type can be selected from the following. Single-phase 20 A, Single-phase 100 A 3-phase 20 A, 3-phase 100 A
Single-phase: Detects burnout with CT1 input.	
3-phase: Detects burnout with CT1 and CT2 input.	

Heating/Cooling control (Option code: $\mathrm{D} \square$)

OUT2 proportional band	0.0 to 10.0 times OUT1 proportional band (ON/OFF control when set to 0.0)
OUT2 integral time	The same as that of OUT1.
OUT2 derivative time	The same as that of OUT1.
OUT2 proportional cycle	1 to 120 seconds [Factory default: Relay contact (DR): 30 sec , Non-contact voltage (DS): 3 sec , Current (DA): Not available]
Overlap/Dead band setting range	Thermocouple, RTD input: -200.0 to $200.0{ }^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$) DC voltage, current input: -2000 to 2000 (The placement of the decimal point follows the selection.)
OUT2 ON/OFF hysteresis	Thermocouple, RTD input: 0.1 to $1000.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ (Default: $1.0{ }^{\circ} \mathrm{C}$) DC voltage, current input: 1 to 10000 (The placement of the decimal point follows the selection.)
OUT2 high limit	0 to 100 \%, DA (Direct current): -5 to 105 \% (Default: 100 \%)
OUT2 low limit	0 to 100 \%, DA (Direct current): -5 to 105 \% (Default: 0 \%)

OUT2 action mode	One cooling action can be selected from Air cooling (linear characteristic), Oil cooling (1.5th power of the linear characteristic) and Water cooling (2nd power of the linear characteristic) by keypad operation. (Factory default: Air cooling)	
Cooling output (OUT2)	DR: Relay contact, 1a	Control capacity: 3 A 250 V AC (resistive load) Electric life: 100,000 cycles
	DS: Non-contact voltage (for SSR drive)	12 V DC $\pm 15 \%$, Max. 40 mA (short circuit protected)
	DA: Current	4 to 20 mA DC (Resolution: 12000) Load resistance: Max. 600Ω

Serial communication (Option code: C, C5)

This option and Console communication cannot be used together.
The following operations can be carried out from an external computer.
(1) Reading and setting of the SV (desired value), PID values and various set values
(2) Reading of the PV (process variable) and action status
(3) Function change

Cable length	Max. 15 m (C) Max.1.2 km (C5) Cable resistance: Within 50Ω (Terminators are not necessary, but if used, use a terminator of 120Ω or more on one side.)			
Communication line	EIA RS-232C (C) EIA RS-485 (C5)			
Communication method	Half-duplex communication			
Synchronization method	Start-stop synchronization			
Communication speed	9600/19200/38400 bps (Selectable by keypad) (Factory default: 9600 bps)			
Data bit/Parity	7 bits, 8bits/Even, Odd and No parity (Selectable by keypad) (Factory default: 7 bits/Even)			
Stop bit	1,2 (Selectable by keypad) (Factory default: 1)			
Communication protocol	Shinko protocol/Modbus ASCII/Modbus RTU (Selectable by keypad) (Factory default: Shinko protocol)			
Data format				
	Communication protocol	Shinko protocol	Modbus ASCII	Modbus RTU
	Start bit	1	1	1
	Data bit	7	7 or 8	8
	Parity	Yes (Even)	Yes (Even, Odd), No parity	Yes (Even Odd), No parity
	Stop bit	1	1 or 2	1 or 2

Number of connectable units	1 unit to 1 host computer (C) Maximum 31 units to 1 host computer (C5)
Communication error detection	Parity, checksum (Shinko protocol), LRC (Modbus ASCII), CRC-16 (Modbus RTU)
Digital external setting	Receives digital set values from Shinko programmable controllers (PC-900, PCD-33A with SVTC option). If data from the PC-900 or PCD-33A is higher than the SV high limit or lower than SV low limit value, this instrument ignores the value, and controls at SV high limit or SV low limit value. SV adds digital set value to SVTC bias value.

External setting input (Option code: EA $\square, \mathrm{EV} \square$)
SV adds external analog signal to remote bias value.

Setting signal	Direct current: 4 to 20 mA DC [Option code: EA1] 0 to 20 mA DC [Option code: EA2]
	DC voltage: 0 to 1 V DC [Option code: EV1] 1 to 5 V DC [Option code: EV2]
Allowable input	EA $\square: 50 \mathrm{~mA} \mathrm{DC}$ or less $\mathrm{EV}: 5 \mathrm{~V}$ DC or less $\mathrm{EV} 2: 10 \mathrm{~V}$ DC or less
Input impedance	$\mathrm{EA} \square: 50 \Omega$ $\mathrm{EV} \square: 100 \mathrm{k} \Omega$
Input sampling period	250 ms

Transmission output (Option code: TA1, TV1)

Converting the value (PV, SV, MV or DV transmission) to analog signal every 125 ms , outputs the value in current or voltage. (Factory default: PV transmission)
Outputs Transmission output low limit value (4 mA DC or 0 V DC) if Transmission output high limit and low limit value are the same.

Resolution	12000
Output	4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(load} \mathrm{resistance} ,\mathrm{maximum} 500 \Omega$) 0 to $1 \mathrm{~V} \mathrm{DC} \mathrm{(load} \mathrm{resistance} ,\mathrm{minimum} 100 \mathrm{k} \Omega)$
Output accuracy	Within ± 0.3 \% of Transmission output span

Insulated power output (Option code: P)

Output voltage	$24 \pm 3 \mathrm{~V}$ DC (when load current is 30 mA DC)
Ripple voltage	Within 200 mV DC (when load current is 30 mA DC)
Max. load current	30 mADC

14. Troubleshooting

If any malfunctions occur, refer to the following items after checking that power is being supplied to the controller.

14.1 Indication

Problem	Presumed cause and solution
[nF] is indicated on the PV display.	- Control output OFF function is working. Press the $\frac{\text { 吕 }}{\text { siop }}$ key for approx. 1 sec to release the function.
] is flashing on the PV display.	- Burnout of thermocouple, RTD or disconnection of DC voltage (0 to 10 mV DC, -10 to 10 mV DC, 0 to 50 mV DC, 0 to 100 mV DC, 0 to 1 V DC) Change each sensor. How to check whether the sensor is burnt out [Thermocouple] If the input terminals of the instrument are shorted, and if a value around room temperature is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [RTD] If approx. 100Ω of resistance is connected to the input terminals between A-B of the instrument and between B-B is shorted, and if a value around $0{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right)$ is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [DC voltage (0 to 10 mV DC, -10 to 10 mV DC, 0 to 50 mV DC, 0 to 100 mV DC, 0 to 1 V DC)] If the input terminals of the instrument are shorted, and if a scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. - Check whether the input terminals of thermocouple, RTD or DC voltage (0 to 10 mV DC, -10 to 10 mV DC, 0 to 50 mV $\mathrm{DC}, 0$ to $100 \mathrm{mV} \mathrm{DC}, 0$ to 1 V DC) are securely mounted to the instrument input terminal. Connect the sensor terminals to the instrument input terminals securely.
[. . . .] is flashing on the PV display.	- Check whether input signal wire for DC voltage (1 to 5 V DC) or current (4 to 20 mADC) is disconnected. How to check whether the input signal wire is disconnected [Voltage (1 to 5 V DC)] If the input to the input terminals of the instrument is 1 V DC and if a scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. [Current (4 to 20 mADC)] If the input to the input terminals of the instrument is 4 mA DC and if a scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. - Check whether input signal wire for DC voltage (1 to 5 V DC) or current (4 to 20 mADC) is securely connected to the instrument input terminals.

Problem	Presumed cause and solution
[- . . -] is flashing on the PV display.	- Check if polarity of thermocouple or compensating lead wire is correct. - Check whether codes (A, B, B) of RTD match the instrument terminals.
The PV display keeps indicating the value which was set in [Scaling low limit].	- Check whether the input signal wire for DC voltage (0 to 5 V $\mathrm{DC}, 0$ to 10 V DC) and current (0 to 20 mADC) is disconnected How to check whether the input signal wire is disconnected [Voltage (0 to 5 V DC, 0 to 10 V DC)] If the input to the input terminals of the instrument is $1 \mathrm{~V} D C$ and if a value (converted value from Scaling high, low limit setting) corresponding to 1 VDC is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. [Current (0 to 20 mADC)] If the input to the input terminals of the instrument is 4 mA DC and if a value (converted value from Scaling high, low limit setting) corresponding to 4 mADC is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. - Check whether the input lead wire terminals for voltage (0 to 5 V DC, 0 to 10 V DC) or current (0 to 20 mADC) are securely mounted to the instrument input terminals.
The indication of PV display is irregular or unstable.	- Check whether sensor input or temperature unit $\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$ is correct. Select the sensor input and temperature unit (${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$) properly. - Sensor correcting value is unsuitable. Set it to a suitable value. - Check whether the specification of the sensor is correct. - AC leaks into the sensor circuit. Use an ungrounded type sensor. - There may be equipment that interferes with or makes noise near the controller. Keep ACD-13A or ACR-13A clear of any potentially disruptive equipment.
[只只 $]$ is indicated on the PV display.	- Internal memory is defective. Contact our agency or us.

14.2 Key operation

Problem	Presumed cause and solution
- Unable to set the SV, P I, D, Event alarm value, etc. - The values do not change by the Δ, ∇ keys.	- Set value lock (Lock 1 to Lock 4) is selected. Release the lock in [Set value lock]. - AT (Auto-tuning) or auto-reset is performing. In the case of AT, cancel AT. It takes approximately 4 minutes until auto-reset is finished.
Setting items of each Event output are not indicated.	Check if the desired action has been selected from Event output allocation.

14.3 Control

Problem	Presumed cause and solution
Temperature does not rise.	• Sensor is out of order. Replace the sensor. - Check whether the Sensor or control output terminals are securely mounted to the instrument input terminals. Ensure that the sensor or control output terminals are mounted to the instrument input terminals securely. - Check whether the wiring of sensor or control output terminals is correct.
The control output	- OUT1 or OUT2 low limit value is set to 100% or higher. remains in an ON status.
Set it to a suitable value.	

For all other malfunctions, please contact our main office or dealers.

15. Character tables

The PV display indicates setting characters, and the SV display indicates factory default value. [Simplified setting]
SV setting mode

Character	Setting item	Data	
	SV -1	Scaling low limit to Scaling high limit	

Event setting mode

Character	Setting item	Data
$B 1$	EVT1 alarm value Setting range: Refer to (Table 15-1) on p.101.	
B IH	EVT1 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	EVT2 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	EVT2 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	EVT3 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	EVT3 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101	
	EVT4 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
RUH	EVT4 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	EVT5 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
A5H 0	EVT5 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	

(Table 15-1)

Alarm type	Setting range
High limit alarm (Deviation setting)	- (Input span) to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
Low limit alarm (Deviation setting)	$-\left(\right.$ Input span) to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits alarm (Deviation setting)	0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits independent (Deviation setting)	0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limit range alarm (Deviation setting)	0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limit range independent (Deviation setting)	0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
Process high alarm	Input range low limit to Input range high limit*2
Process low alarm	Input range low limit to Input range high limit*2
High limit alarm with standby (Deviation setting)	- -(Input span) to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
Low limit alarm with standby (Deviation setting)	- -(Input span) to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits with standby (Deviation setting)	0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$
High/Low limits with standby independent (Deviation setting)	0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$

*1: For DC voltage, current input, the input span is the same as the scaling span.
*2: For DC voltage, current input, input range low (or high) limit value is the same as scaling low (or high) limit value.

PID setting mode

Character	Setting item	Data
\square	OUT1 proportional band 0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current input: 0.0 to 1000.0 \%	
$\square_{-1} B$	OUT2 proportional band 0.0 to 10.0 times (Multiplied value of OUT1 proportional band)	
$\begin{array}{ll} \hline 1 & \\ -1 & 200 \\ \hline-1 \end{array}$	Integral time 0 to 3600 sec	
$\begin{array}{cc} 0 \\ -1 & 50 \end{array}$	Derivative time 0 to 1800 sec	
$\operatorname{Binw}_{-1} \operatorname{SO}_{50}$	ARW 0 to 100 \%	
QLEF	Manual reset ± 1000.0 DC voltage, current input: The placement of the decimal point follows the selection.	
$\begin{array}{\|c\|c\|} \hline \square \square R i & 0 \\ -1 & 0 \end{array}$	OUT1 rate-of-change 0 to $100 \% / \mathrm{sec}$	

SV, Event group (for Fixed value control)

Character	Setting item	Data
[_L	SV, Event group	
$\begin{array}{\|cc} 4 & 0 \\ -1 & 0 \end{array}$	SV1 Scaling low limit to Scaling high limit	
$\begin{array}{\|ll\|} \hline R 1 & 0 \\ -1 & 0 \end{array}$	EVT1 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
$\begin{array}{ll} 8 \mathrm{II} \\ 0 \end{array}$	EVT1 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
RI	EVT2 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
RICH	EVT2 high limit alarm value Setting range: Refer to (Table 15-1) on p.101.	
	EVT3 alarm value Setting range: Refer to (Table 15-1) on p.101.	
RЭH	EVT3 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	EVT4 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
ПUH	EVT4 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	EVT5 alarm value Setting range: Refer to (Table 15-1) on p.101.	
0	EVT5 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	

Program pattern group (for Program control)

Character	Setting item	Data
Γ_{2}	Program pattern group	
4	Step 1 SV Scaling low limit to Scaling high limit value	
II ME	Step 1 time 00:00 to 99:59	
lini_{-1}	Step 1 Wait value 0 to Converted value of 20% of the input span	
	Step 1 EVT1 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	Step 1 EVT1 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	Step 1 EVT2 alarm value Setting range: Refer to (Table 15-1) on p.101.	
	Step 1 EVT2 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	Step 1 EVT3 alarm value Setting range: Refer to (Table 15-1) on p.101.	
	Step 1 EVT3 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	Step 1 EVT4 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
	Step 1 EVT4 high limit alarm value Setting range: Refer to (Table 15-1) on p.101.	
	Step 1 EVT5 alarm value Setting range: Refer to (Table 15-1) on p. 101.	
RSH 8	Step 1 EVT5 high limit alarm value Setting range: Refer to (Table 15-1) on p. 101.	

	Step 2 SV	
	Step 2 time	
	Step 2 Wait value	
	Step 2 EVT1 alarm value	
	Step 2 EVT1 high limit alarm value	
	Step 2 EVT2 alarm value	
	Step 2 EVT2 high limit alarm value	
	Step 2 EVT3 alarm value	
	Step 2 EVT3 high limit alarm value	
	Step 2 EVT4 alarm value	
	Step 2 EVT4 high limit alarm value	
	Step 2 EVT5 alarm value	
	Step 2 EVT5 high limit alarm value	
	Step 3 SV	
	Step 3 time	
	Step 3 Wait value	
	Step 3 EVT1 alarm value	
	Step 3 EVT1 high limit alarm value	
	Step 3 EVT2 alarm value	
	Step 3 EVT2 high limit alarm value	
	Step 3 EVT3 alarm value	
	Step 3 EVT3 high limit alarm value	
	Step 3 EVT4 alarm value	
	Step 3 EVT4 high limit alarm value	
	Step 3 EVT5 alarm value	
	Step 3 EVT5 high limit alarm value	
	Step 4 SV	
	Step 4 time	
	Step 4 Wait value	
	Step 4 EVT1 alarm value	
	Step 4 EVT1 high limit alarm value	
	Step 4 EVT2 alarm value	
	Step 4 EVT2 high limit alarm value	
	Step 4 EVT3 alarm value	
	Step 4 EVT3 high limit alarm value	
	Step 4 EVT4 alarm value	
	Step 4 EVT4 high limit alarm value	
	Step 4 EVT5 alarm value	
	Step 4 EVT5 high limit alarm value	
	Step 5 SV	
	Step 5 time	
	Step 5 Wait value	
	Step 5 EVT1 alarm value	
	Step 5 EVT1 high limit alarm value	
	Step 5 EVT2 alarm value	
	Step 5 EVT2 high limit alarm value	
	Step 5 EVT3 alarm value	
	Step 5 EVT3 high limit alarm value	
	Step 5 EVT4 alarm value	
	Step 5 EVT4 high limit alarm value	

	Step 5 EVT5 alarm value	
	Step 5 EVT5 high limit alarm value	
	Step 6 SV	
	Step 6 time	
	Step 6 Wait value	
	Step 6 EVT1 alarm value	
	Step 6 EVT1 high limit alarm value	
	Step 6 EVT2 alarm value	
	Step 6 EVT2 high limit alarm value	
	Step 6 EVT3 alarm value	
	Step 6 EVT3 high limit alarm value	
	Step 6 EVT4 alarm value	
	Step 6 EVT4 high limit alarm value	
	Step 6 EVT5 alarm value	
	Step 6 EVT5 high limit alarm value	
	Step 7 SV	
	Step 7 time	
	Step 7 Wait value	
	Step 7 EVT1 alarm value	
	Step 7 EVT1 high limit alarm value	
	Step 7 EVT2 alarm value	
	Step 7 EVT2 high limit alarm value	
	Step 7 EVT3 alarm value	
	Step 7 EVT3 high limit alarm value	
	Step 7 EVT4 alarm value	
	Step 7 EVT4 high limit alarm value	
	Step 7 EVT5 alarm value	
	Step 7 EVT5 high limit alarm value	
	Step 8 SV	
	Step 8 time	
	Step 8 Wait value	
	Step 8 EVT1 alarm value	
	Step 8 EVT1 high limit alarm value	
	Step 8 EVT2 alarm value	
	Step 8 EVT2 high limit alarm value	
	Step 8 EVT3 alarm value	
	Step 8 EVT3 high limit alarm value	
	Step 8 EVT4 alarm value	
	Step 8 EVT4 high limit alarm value	
	Step 8 EVT5 alarm value	
	Step 8 EVT5 high limit alarm value	
	Step 9 SV	
	Step 9 time	
	Step 9 Wait value	
	Step 9 EVT1 alarm value	
	Step 9 EVT1 high limit alarm value	
	Step 9 EVT2 alarm value	
	Step 9 EVT2 high limit alarm value	
	Step 9 EVT3 alarm value	
	Step 9 EVT3 high limit alarm value	

	Step 9 EVT4 alarm value	
	Step 9 EVT4 high limit alarm value	
	Step 9 EVT5 alarm value	
	Step 9 EVT5 high limit alarm value	
	Step 10 SV	
	Step 10 time	
	Step 10 Wait value	
	Step 10 EVT1 alarm value	
	Step 10 EVT1 high limit alarm value	
	Step 10 EVT2 alarm value	
	Step 10 EVT2 high limit alarm value	
	Step 10 EVT3 alarm value	
	Step 10 EVT3 high limit alarm value	
	Step 10 EVT4 alarm value	
	Step 10 EVT4 high limit alarm value	
	Step 10 EVT5 alarm value	
	Step 10 EVT5 high limit alarm value	
	Step 11 SV	
	Step 11 time	
	Step 11 Wait value	
	Step 11 EVT1 alarm value	
	Step 11 EVT1 high limit alarm value	
	Step 11 EVT2 alarm value	
	Step 11 EVT2 high limit alarm value	
	Step 11 EVT3 alarm value	
	Step 11 EVT3 high limit alarm value	
	Step 11 EVT4 alarm value	
	Step 11 EVT4 high limit alarm value	
	Step 11 EVT5 alarm value	
	Step 11 EVT5 high limit alarm value	
	Step 12 SV	
	Step 12 time	
	Step 12 Wait value	
	Step 12 EVT1 alarm value	
	Step 12 EVT1 high limit alarm value	
	Step 12 EVT2 alarm value	
	Step 12 EVT2 high limit value	
	Step 12 EVT3 alarm value	
	Step 12 EVT3 high limit alarm value	
	Step 12 EVT4 alarm value	
	Step 12 EVT4 high limit alarm value	
	Step 12 EVT5 alarm value	
	Step 12 EVT5 high limit alarm value	
	Step 13 Sime	
	Step 13 EVTT1 alarm value	

	Step 13 EVT3 alarm value	
	Step 13 EVT3 high limit alarm value	
	Step 13 EVT4 alarm value	
	Step 13 EVT4 high limit alarm value	
	Step 13 EVT5 alarm value	
	Step 13 EVT5 high limit alarm value	
	Step 14 SV	
	Step 14 time	
	Step 14 Wait value	
	Step 14 EVT1 alarm value	
	Step 14 EVT1 high limit alarm value	
	Step 14 EVT2 alarm value	
	Step 14 EVT2 high limit alarm value	
	Step 14 EVT3 alarm value	
	Step 14 EVT3 high limit alarm value	
	Step 14 EVT4 alarm value	
	Step 14 EVT4 high limit alarm value	
	Step 14 EVT5 alarm value	
	Step 14 EVT5 high limit alarm value	
	Step 15 SV	
	Step 15 time	
	Step 15 Wait value	
	Step 15 EVT1 alarm value	
	Step 15 EVT1 high limit alarm value	
	Step 15 EVT2 alarm value	
	Step 15 EVT2 high limit alarm value	
	Step 15 EVT3 alarm value	
	Step 15 EVT3 high limit alarm value	
	Step 15 EVT4 alarm value	
	Step 15 EVT4 high limit alarm value	
	Step 15 EVT5 alarm value	
	Step 15 EVT5 high limit alarm value	

PID group

Character	Setting item	Data
U_玩	PID group	
	PID zone value 1 Scaling low limit to Scaling high limit	
	OUT1 proportional band 1 0 to Input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current input: 0.0 to 1000.0 \%	
$\square_{-1} b$	OUT2 proportional band 1 0.0 to 10.0 times (Multiplied value of OUT1 proportional band)	
$\begin{array}{cc} 1 & \\ -1 & 200 \end{array}$	Integral time 1 0 to 3600 sec	
	Derivative time 1 0 to 1800 sec	
RON	ARW 1 0 to 100 \%	
חИEI	Manual reset 1 ± 1000.0 DC voltage, current input: (The placement of the decimal point follows the selection.)	
	OUT1 rate-of-change 1 0 to $100 \% / \mathrm{sec}$	
	PID zone value 2	
	OUT1 proportional band 2	
	OUT2 proportional band 2	
	Integral time 2	
	Derivative time 2	
	ARW 2	
	Manual reset 2	
	OUT1 rate-of-change 2	
	PID zone value 3	
	OUT1 proportional band 3	
	OUT2 proportional band 3	

	Integral time 3	
	Derivative time 3	
	ARW 3	
	Manual reset 3	
	OUT1 rate-of-change 3	
	PID zone value 4	
	OUT1 proportional band 4	
	OUT2 proportional band 4	
	Integral time 4	
	Derivative time 4	
	ARW 4	
	Manual reset 4	
	OUT1 rate-of-change 4	
	PID zone value 5	
	OUT1 proportional band 5	
	OUT2 proportional band 5	
	Integral time 5	
	Derivative time 5	
	ARW 5	
	Manual reset 5	
	OUT1 rate-of-change 5	

AT group

Character	Setting item	Data
$\tilde{U}_{1} R I$	AT group	
AI	AT/Auto-reset	
$A r_{-} b_{20}$	AT bias 0 to $50{ }^{\circ} \mathrm{C}\left(0\right.$ to $\left.100{ }^{\circ} \mathrm{F}\right)$ With a decimal point: 0.0 to $50.0{ }^{\circ} \mathrm{C}\left(0.0\right.$ to $\left.100.0{ }^{\circ} \mathrm{F}\right)$	

Engineering group

Character	Setting item	Data
U_ENV	Engineering group	

Input group

Character	Setting item					Data
E＿I MiV	Input group					
$\text { LENK }_{K}$	Input type					
	$\cdots \square$	K	－200	to	1370	
	1－I	K	－200．0	to	400.0	
		J	－200	to	1000	
	$\cdots \mathrm{F}$	R	0	to	1760	
	4 T	S	0	to	1760	
	$\square \square 1$	B	0	to	1820	
	EロI	E	－200	to	800	
	$1 \square$	T	－200．0	to	400.0	
	$\because \mathrm{N}$	N	－200	to	1300	
	F！	PL－II	0	to	1390	
	二ロ｜F	C（W／Re5－26）	0	to	2315	
	FIT ．	Pt100	－200．0	to	850.0	
	MFI＇İ	JPt100	－200．0	to	500.0	
	F1\％	Pt100	－200	to	850	
	MFIT	JPt100	－200	to	500	
	FI＇ 1.1	Pt100	－100．0	to	100.0	
	FTE．	Pt100	－100．0	to	500.0	
	$\cdots \square$	K	－328	to	2498	
	\cdots	K	－328．0	to	752.0	
	$\square F$	J	－328	to	1832	
	$F \mathrm{~F}$	R	32	to	3200	
	$4 \square 17$	S	32	to	3200	
	$\square \square F$	B	32	to	3308	
	にロリ	E	－328	to	1472	
	$1 \square$	T	－328．0	to	752.0	
	$\cdots \mathrm{F}$	N	－328	to	2372	
	F！FF	PL－II	32	to	2534	
	$\square \mathrm{F}$	C（W／Re5－26）	32	to	4199	
	\cdots	Pt100	－328．0	to	1562.0	
	\＆IFT．F	JPt100	－328．0	to	932.0	
	FTOF	Pt100	－328	to	1562	
	MFIF	JPt100	－328	to	932	
	F－F．F	Pt100	－148．0	to	212.0	
		Pt100	－148．0	to	932.0	

Character	Setting item	Data
E＿ロuir	Output group	
Γ 30	OUT1 proportional cycle 1 to 120 sec	
c_{30}	OUT2 proportional cycle 1 to 120 sec	
OLH 100	OUT1 high limit OUT1 low limit to 100 \％ （Current output：OUT1 low limit to 105 \％）	
$\square L L$ \because	OUT1 low limit 0 \％to OUT1 high limit （Current output：－5 \％to OUT1 high limit）	
Hyl 10	OUT1 ON／OFF hysteresis 0.1 to $1000.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage，current input： 1 to 10000 （The placement of the decimal point follows the selection．）	
ᄃВ	OUT2 action mode Fil：Air cooling（linear characteristics） ai min：Water cooling（2nd power of the linear characteristics）	
	OUT2 high limit OUT2 low limit to 100 \％ （Current output：OUT2 low limit to 105 \％）	
QLLG 3	OUT2 low limit 0 \％to OUT2 high limit （Current output：－5 \％to OUT2 high limit）	
	Overlap／Dead band $-200.0 \text { to } 200.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage，current input：－2000 to 2000 （The placement of the decimal point follows the selection．）	
	OUT2 ON／OFF hysteresis 0.1 to $1000.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage，current input： 1 to 10000 （The placement of the decimal point follows the selection．）	
$\begin{gathered} \text { COIV } \\ \text { CIVI } \\ \text { HERI } \end{gathered}$	Direct／Reverse action HEGI：：Reverse（Heating）action ロロロー ：Direct（Cooling）action	

\|incil	OUT1 preset output 0.0 to 100.0 \% (Current output: -5.0 to 105.0 \%)
PRLI	OUT2 preset output 0.0 to 100.0 \% (Current output: -5.0 to 105.0%)

Event input group

Character	Setting item	Data
E_EVI	Event input group	
$\text { EVII } 1$	Event input EVI1 allocation Refer to the Event input allocation table.	
$\text { EVII } 2$	Event input EVI2 allocation Refer to the Event input allocation table.	
$21 \Gamma 17$	Event input EVI3 allocation Refer to the Event input allocation table.	
$\text { EVII } 4$	Event input EVI4 allocation Refer to the Event input allocation table.	

Event input allocation table

Selected value	Event input function	Input ON (Closed)	Input OFF (Open)	Remarks
000	No event			
001	Set value memory	$2^{\text {n }}$	1	$\mathrm{n}=0$ to 3
002	Control ON/OFF	Control OFF	Control ON	Control output OFF function
003	Direct/Reverse action	Direct action	Reverse action	Always effective
004	Timer Start/Stop	Start	Stop	
005	PV display; PV holding	Holding	Not holding	Ineffective when controlling
006	PV display; PV peak value holding	Holding	Not holding	Ineffective when controlling
007	Preset output 1	Preset output	Standard control	If sensor is burnt out, the unit maintains control with the preset output MV.

Selected value	Event input function	Input ON (Closed)	Input OFF (Open)	Remarks
008	Auto/Manual control	Manual control	Automatic control	
009	Remote/Local	Remote	Local	Effective only when EA \square or EV \square option is ordered
010	Program mode; RUN/STOP	RUN	STOP	Level action when power-on
011	Program mode; Holding/Not holding	Holding	Not holding	Level action when power-on
012	Program mode; Advance function	Advance	Standard control	Level action when power-on
013	Integral action holding	Integral action Holding	Standard integral action	Control continues with the integral value being held.
014	Preset output 2	Preset output	Standard control	The unit maintains control with the preset output MV.

Event output group

Character	Setting item	Data
E_El'	Event output group	
EVIGil	Event output EVT1 allocation Refer to Event output allocation table.	
	Event output EVT2 allocation Refer to Event output allocation table.	
$\left[\begin{array}{cc} {[V I T} \\ 0000 \end{array}\right]$	Event output EVT3 allocation Refer to Event output allocation table.	
$\text { EVIT } 4$	Event output EVT4 allocation Refer to Event output allocation table.	
EVI	Event output EVT5 allocation Refer to Event output allocation table.	

Event output allocation table

Selected value	Event output function	Proceeding to the lower level with the MODE key	Remarks
000	No event		
001	Alarm output; High limit alarm	Alarm hysteresis mode Alarm action delay timer mode Alarm Energized/De-energized	
002	Alarm output; Low limit alarm	The same as the High limit alarm	
003	Alarm output; High/Low limits	The same as the High limit alarm	
004	Alarm output; High/Low limits independent	The same as the High limit alarm	
005	Alarm output; High/Low limit range	The same as the High limit alarm	
006	Alarm output; High/Low limit range independent	The same as the High limit alarm	
007	Alarm output; Process high alarm	The same as the High limit alarm	
008	Alarm output; Process low alarm	The same as the High limit alarm	
009	Alarm output; High limit with standby	The same as the High limit alarm	
010	Alarm output; Low limit with standby	The same as the High limit alarm	
011	Alarm output; High/Low limits with standby	The same as the High limit alarm	
012	Alarm output; High/Low limits with standby independent	The same as the High limit alarm	
013	Timer output linked to "Timer Start/Stop" from Event input allocation.	Timer output delay action Timer output time unit \downarrow MODE OFF delay time MODE ON delay time	Select "Timer Start/Stop" from Event input allocation.
014	Timer output linked to "Timer Start/Stop" from Event input allocation. Control ON during timer operation. Control OFF after time is up.	The same as the above	The same as the above

Selected value	Event output function	Proceeding to the lower level with the MODE key	Remarks
015	Heater burnout alarm output	Heater rated current 1 MODE Heater burnout alarm 1 value \downarrow MODE Heater burnout alarm 2 value	Rated current 20 A or 100 A ． Settable within the rated current．
016	Loop break alarm output	Loop break alarm time 1 MODE Loop break alarm span	
017	Time signal output	Time signal output step \downarrow MODE Time signal OFF time \downarrow MODE Time signal ON time	Time signal output is turned off when the performing step is complete．
018	Output during AT		Output during AT
019	Pattern end output		Program control

Alarm output setting items（when alarm output is selected from Event output allocation）

Character	Setting item	Data
Biny	Alarm hysteresis 0.1 to $1000.0{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage，current input： 1 to 10000 （The placement of the decimal point follows the selection．）	
Ridt	Alarm action delay timer 0 to 10000 sec	
$\text { R } \operatorname{liPEH}_{\substack{\text { NOML } \\ \text { NOM }}}$	Alarm Energized／De－energized 六Eット：De－energized	

If＂001（Alarm output；High limit alarm）to 012 （Alarm output；High／Low limits with standby independent＂is selected in［Event output EVT2 to EVT5 allocation］，

Timer output setting items：When timer output is selected from Event output allocation

Character	Setting item	Data
वL	Timer output delay action an口：ON delay time ローに：OFF delay time ロバルに：ON／OFF delay time	
$\Gamma_{M N} L$	Timer output time unit ril MU：Minute ーロルロ：Second	
B	OFF delay time 0 to 10000 （Time unit follows the selection in［Timer output time unit］．）	
ロuaiv	ON delay time 0 to 10000 （Time unit follows the selection in［Timer output time unit］．）	

Heater burnout alarm output setting items：When Heater burnout alarm is selected from Event output allocation

Character	Setting item	Data
$\mathrm{H}_{-} L$	Heater rated current スロロ: 20.0 A 昭明: 100.0A	
H 00	Heater burnout alarm 1 value Rated current 20．0 A： 0.0 to 20.0 A ， 100．0 A： 0.0 to 100.0 A	
HC 00	Heater burnout alarm 2 value Rated current 20．0 A： 0.0 to 20.0 A ， 100．0 A： 0.0 to 100.0 A	

Loop break alarm setting items：When Loop break alarm is selected from Event output allocation

Character	Setting item	Data
LD_I	Loop break alarm time 0 to 200 min	
$\mathrm{LO}_{2} \mathrm{H}_{3}$	Loop break alarm span 0 to $150{ }^{\circ} \mathrm{C}$（ ${ }^{\circ} \mathrm{F}$ ）or 0.0 to $150.0^{\circ} \mathrm{C}$（ ${ }^{\circ} \mathrm{F}$ ） DC voltage，current input： 0 to 1500 （The placement of the decimal point follows the selection．）	

Time signal output setting items：When Time signal output is selected from Event output allocation

Character	Setting item	Data
$\Gamma \mathrm{L}_{-} \mathrm{NVO}_{i}$	Time signal output step 1 to 15	
	Time signal output OFF time 00:00 to 99:59 （Time unit follows the selection in［Step time unit］in the Program group）	
TL_Div	Time signal output ON time 00:00 to 99:59 （Time unit follows the selection in［Step time unit］in the Program group）	

Program group

Character	Setting item	Data
E＿PDa	Program group	
	Fixed value control／Program control $F_{i} \quad$ थ \square Fixed value control FRロロ：Program control	
$\mathrm{Mi}_{-\mathrm{MI}} \mathrm{~L}$	Step time unit ＂吅部：Hour：Minute ーには：Minute：Second	
PRET	Power restore action ，1， にばリ：Continues after power restoration －iロí：Suspended（On hold）after power restoration	
$4 _4$	Program start temperature Scaling low limit to Scaling high limit value	

Communication group

Character	Setting item	Data
$E_{-} C a^{M}$	Communication group	
CMLI	Communication protocol ハロロー：Modbus ASCII mode Mロロー：Modbus RTU mode	
CMAV	Instrument number 0 to 95	
ธMLO	Communication speed －GE： 9600 bps 守に： 19200 bps こに㤩： 38400 bps	
CMIT	Data bit／Parity 日心は， 8 bits／No parity 保口初： 7 bits／No parity 日にいが， 8 bits／Even テにいいい： 7 bits／Even 日ロば！： 8 bits／Odd Tロば！ 7 bits／Odd	

Character	Setting item	Data
	Stop bit $\begin{array}{r} \square 1 \\ \square 日 1 \end{array}$	
$4 l^{\prime} _b$	SVTC bias Converted value of $\pm 20 \%$ of the input span DC voltage，current input：$\pm 20 \%$ of the scaling span （The placement of the decimal point follows the selection．）	

External setting group

Character	Setting item	Data
E＿Eni	External setting group	
REMIDín LocRL	Remote／Local にローダ！：Local只にが臭：Remote	
बгட	External setting input high limit External setting input low limit to Input range high limit	
RILLE	External setting input low limit Input range low limit to External setting input high limit	
ai_b	Remote bias Converted value of $\pm 20 \%$ of the input span DC voltage，current input：$\pm 20 \%$ of the scaling span （The placement of the decimal point follows the selection．）	

Transmission output group

Character	Setting item	Data
E＿r	Transmission output group	
K	Transmission output type FllU：PV（process variable）transmission －$\because \mathrm{B}: ~ \mathrm{SV}$（desired value）transmission ＂ ロil V ：DV（deviation）transmission	
「RLM	Transmission output high limit PV，SV transmission：Transmission output low limit to Input range high limit value MV transmission：Transmission output low limit to 105.0 （\％） DV transmission：Transmission output low limit to Scaling span	
$\text { } F Q L L_{-200}^{L}$	Transmission output low limit PV，SV transmission：Input range low limit to Transmission output high limit value MV transmission：－5．0 to Transmission output high limit value（\％） DV transmission：－Scaling span to Transmission output high limit value	

Other function group

Character	Setting item	Data
E＿םi	Other function group	
Lロロバ	Set value lock －－－－（Unlock）：All set values can be changed． LaI（Lock 1）：None of the set values can be changed． Lロに元（Lock 2）：Only SV（desired value）can be changed． にロー（Lock 3）：None of the set values can be changed as Lock 1. にロール（Lock 4）：SV and Alarm value can be changed． Other set values cannot be changed．	
Qi din	PID zone function 吅淂品：Not used 	
мAF U	SV rise rate 0 to $10000{ }^{\circ} \mathrm{C} / \mathrm{min}\left({ }^{\circ} \mathrm{F} / \mathrm{min}\right)$ Thermocouple，RTD input with a decimal point： $0.0 \text { to } 1000.0{ }^{\circ} \mathrm{C} / \mathrm{min}\left({ }^{\circ} \mathrm{F} / \mathrm{min}\right)$ DC voltage，current input： 0 to 10000／min（The placement of the decimal point follows the selection．）	

वRFI	SV fall rate 0 to $10000{ }^{\circ} \mathrm{C} / \mathrm{min}\left({ }^{(} \mathrm{F} / \mathrm{min}\right)$ Thermocouple，RTD input with a decimal point： $0.0 \text { to } 1000.0^{\circ} \mathrm{C} / \mathrm{min}(\mathrm{~F} / \mathrm{min})$ DC voltage，current input： 0 to 10000／min（The placement of the decimal point follows the selection．）	
$\operatorname{civ}_{\circ}^{\prime \prime}$	Indication when output OFF ロFF：OFF indication Fロルに：No indication $\square 1, \mathrm{~F}$ $F \because, F_{1} \square$ ：PV indication＋Any event from EVT1 to EVT5 output	
$\begin{gathered} \text { GIVI } \\ \text { BLL } \end{gathered}$	Backlight selection FiL：All（displays and indicators）are backlit． Fi， V ：Only PV display is backlit． － $1, \mathrm{~V}$ ：Only SV display is backlit． Fルロ：Only Action indicators are backlit． Fッ，Fル：PV display and Action indicators are backlit． $4, \mathrm{~F}_{1} \mathrm{~B}$ ：SV display and Action indicators are backlit．	
$C_{R E d}^{\prime} Q_{i}$	PV color REのU：Red 㖇 Orange Fin：When any alarm output from EVT1 to EVT5 is ON, PV color turns from green to red． Filari：When any alarm output from EVT1 to EVT5 is ON，PV color turns from orange to red． Fい，に：PV color changes continuously（Orange \rightarrow Green \rightarrow Red）． FIV：PV color changes continuously（Orange Green \rightarrow Red），and simultaneously when any alarm output from EVT1 to EVT5 is ON（Red）．	
CLRL_{50}	PV color range 0.1 to $200.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage，current input： 1 to 2000 （The placement of the decimal point follows the selection．）	
	Backlight time 0 to 99 minutes	
	```Bar graph Mi,\square:L: MV (manipulated variable) indication Gi'\\: DV (deviation) indication ハロバに:No indication```	
$\text { -l'int } \square$	Deviation unit   1 to Converted value of $20 \%$ of the input span	


Step number	1	2	3	4	5	6
Step SV						
Step time ( : )						
Wait value						
EVT1 alarm value						
EVT1 high limit alarm value						
EVT2 alarm value						
EVT2 high limit alarm value						
EVT3 alarm value						
EVT3 high limit alarm value						
EVT4 alarm value						
EVT4 high limit alarm value						
EVT5 alarm value						
EVT5 high limit alarm value						
Time signal output ON    OFF						


PID zone value	1	2	3	4	5
OUT1 proportional band					
OUT2 proportional band					
Integral time					
Derivative time					
ARW					
Manual reset					
OUT1 rate-of-change					


7	8	9	10	11	12	13	14	15

***** $\ln q$ uiries *****

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.
[Example]

- Model ----------------------------- ACD-13A-R/M
- Option ---------------------------- A3, C5
- Serial number ------------------ No. 123456789

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

## SHINKO TECHNOS CO., LTD. OVERSEAS DIVISION

Head Office: 2-5-1, Senbahigashi, Minoo, Osaka, Japan
URL: http://www.shinko-technos.co.jp

Tel: +81-72-727-6100
E-mail:
overseas@shinko-technos.co.jp
Fax: +81-72-727-7006

